
ADAlIII DS NAVAL POSTOADUATE SCHOOL. MONTEREY CA F/s 9/2
ADAPTATION OF MNETIC MOLE HENRY IN A STANDARD NICROCOWUE-(TC(U)
DEC 81 N S MICKLIN, J A NEWPLD

UNCLASSIFICO; EEllllEEllEI
llEhllllllEEllE
EIIIIIIIIIIIIu
I IIIIIIIIIIIII
IIIIIIIIIIIIIIl
IIIIIIIIIIIIIIlfflfflf

L_

i 2 13 2.

111111 . -6

111 * IIIII
Illll ll Jillm

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDAROS-163-A

NAVAL POSTGRADUATE SCHOOL
-Monterey, California

DTIC
ELECTE

$ JUN2 1982:

THESIS
ADAPTATION OF MAGNETIC BUBBLE MEMORY

IN A STANDARD MICROCOMPUTER ENVIRONMENT

by

Michael S. Hicklin

and

Jeffrey A. Neufeld

December 1981

Thesis Advisor: R. R. Stilwell

Approved for public release; distribution unlimited

82 04 O 010
9.

UNCl.AqqTFT~i
S e C U m T V C L A S SmUIC A T I O t O OIS P A E4 (W bM a * a n* _Z___o_ _ _ __d_ _ _ _ _

REPOWI' DOOUIETATION PAGE Wrong COMPLaTG PC)"vs
N a. XVZ ACCESSON NO S. NECIVICONTS CATALOG NUmet

4. :):Type or REPORT P_ _OO COVERED
Master's Thesis;

Adaptation of Magnetic Bubble Memory in December 1981
a Standard Microcomputer Environment 6. p*FoNaoING 04G. RepanTyNUMsE

7. AUTNOq*() I.s CONTlNACT a* GRN? NumeMtwef

Michael S. Hicklin
Jeffrey A. Neufeld
P WORNIG O1NIZATIM Nna A"G A004966 0Ia. 'PNOGNA HLEMENT. PNOJECT TSK

ANCA 6 WOS. NIT NUMNENS

Naval Postgraduate School
Monterey, California 93940

#I. CONTNOLLIM OPFFIC NAME AN AO LOS198 12. NEPOMT DAT%

Naval Postgraduate School December 198
Monterey, California 93940 . NUMMENo PAGES

4. 0817110o06 AGENCY MAME 1 AOO411(I WOOS~$ imINN C l OUMlco) 11. SECURITY CLASS. (*I thl rpOore)

Naval Postgraduate School Unclassified
Monterey, California 93940

IN [ou L. E

I. OISTRIBUTION SITATEMENT (of Off Repe)

Approved for public release; distribution unlimited

CI. ,ST"InUTON STATCMENT (of #A* dbd t amned on 2ie 6 e, itU OOSe mn Rfp)

It. SuKa110LCNTANY r.OT aS

= "-; 1IS. K Er WONtOS (CuusfMe on ievw**e odee II me*.i~l am EEIb , WIecA mib)

Magnetic bubble memory, microcomputer operating system,
CP/M-86, secondary storage media

20. A uSTRACT (CnWM e'in Oldm 0 000oep aM IMIs V W W"& wmej

Magnetic bubble memory is a new digital storage
technology that offers many significant advantages over
currently existing secondary storage media. Bubble
memories, with high densities and relatively fast access
times, are non-volatile semiconductor devices that provide a
high degree of reliability in harsh environments. This
technology has the potential for a vital and unique role in

DID, EO1473 N0 o, oI NOV so6 is LT,
DO AN" 7 3 SN 0101-014-6601

SECI~tTY CLAIPICA?@N OW 9WIS PAGE ,'..l Dral mmWO~lI

UNCLASSIFIED
60WNvCLASVICY,@,U OV Two$ 06SCV%' Req. 80"e.

(continuation of abstract)

9both the civilian and military computing environments due to
the combination of characteristics exhibited by magnetic
domain devices.

This thesis presents an implementation of a magnetic
bubble device utilizing a conventional operating system,
Digital Research's CP/M-86, and a standard commercial 16-bit
microcomputer, the Intel iSBC 86/]2A. A fully operational
system capable of testing, evaluating and utilizing a
magnetic bubble device in a standard user environment is
presented.

/

Accession For

NTIS C9RA&I

DTIC T*'X E
Unarr,- i --u e d
Just; I :t on E

Distr4 ,lut I cal/

Availfabll.t y Codes

copy Ava'! wid/or
SPECTEO Dist pcclal

OD ForT 1473 ,,. -... -...

S/4 010J~2-014-8S601 SI~C4J*IYW :h6A&jjAajpjg I P "All 0642N3 0# Em. M.0.

approved for public release; distribution unl.imited.

Adaptation cf Magnetic Bubirl&' Mesory
i.n a standard Microcomputer Environment

by

Michael S. Hicklin
Captain,,Uniteda~tate* Marine Corps

B.S.M.E., University of Utah

Jeffrey A. Neufeld
Captain, United States Marine CorpsB.S.S.E., United States Naval Academy

Submitted iin partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

December 1981

Authors: ,4i

Approved by:* _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _

Thesis Advisor

Dean cf information and Policy Sciences

3

IBSTRACT

magnetic bubble memory is a new digital storage

technology that offers many significant advantages over

currently existing secondary storage media. Bubble

memories, with high densities and relatively fast access

times, are non-volatile semiconductor devices that provide a

hiqh degree of reliability in harsh environments. This

technology has the potential for a vital and unigue role in

both the civilian and military computing environments due to

the combination of characteristics exhibited by magnetic

domain devices.

This thesis presents an implementation of a magnetic

butkle device utilizing a conventional operating system,

Diqital Research's CP/K-86, and a standard commercial 16-bit

micrccomputer, the Intel iSBC 86/12A. A fully cperational

system capable of testing, evaluating and utilizing a

magnetic bubble device in a standard user environment is

presented.

J4

TABLE CF CONTSETS

I• INTRODUCTION 9

II. BACKGROUND OF BUBBLE 0ENOBIES 12

A. MAGNETIC BUBBLE DOMAINS ------------ 12

B. BUBBLE DOBAIN DEVICES ------------------ 17

C. HISTORY AND DEVELOPHENT----------------------- 25

D. CURRENT TECHNOLOGY AND ARCHITECTURE---------- 27

III. APPLICABILITY Of MAGNETIC BUBBLE MEMORIES 36

A. COMPARISON CF MASS STORAGE TECHNOLOGIES ------- 36

B. APPLICATIONS OF MAGNETIC BUBBLE MEMORY 42

IV. DESCRIPTION OF THE DEVELOPMENTAL SYSTER --------- 46

A. TIB0203 MAGNETIC BUBBLE MEMORY 46

B. PC/B NBB-80 BUBBLE MEMORY SISTER -------------- 48

C. DEVELOPMENTAL SYSTEM --------------- 50

D. IMPLEMENTATION HOST SYSTEM ---- -------- 52

V. LOW-LEVEL BUBBLE PEVICE INTERPACE ----------------- 56

A. INTEL 8080 IMPLEMENTATION --------------------- 56

B. USE OF THE CP/M-80 MBB-80 DIAGNOSTIC PROGRAM 60

C. INTEL 8086 INTERFACE CONSIDERATIONS ----------- 62

D. INTEL 8086 IMPLEBENTATION --------------------- 65

E. USE OF THE CP/M-86 MBB-80 DIAGNOSTIC PRCGRAMS - 71

S

VI. CP/M-86 INTERFACE IMPLEMENTATION 75

A. BJUBBLE DEVICE STORAGE ORGANIZATION----------- 75

B. CP/M-86 BIOS CONSIDERATIONS ------------------- 79

1. Structured Standards for the BIOS --------- 79

2. Structured Approach to the BIOS---------- 81

3. Jump Vector Interfaces ------------ 84

C. USE OF THE CP/M-86 REB-80 PORAT PROGRAM ------ 88

D. CP/N-86 BIOS IMPLEMENTATION ------------------- 90

1. Modification of the Existing BIOS --------- 90

2. Disk Parameter Table ------------ 92

3. Disk Configuration Tables ----------------- 95

8. BIOS Generation Procedure ----------------- 99

5. Reconfiguring the BIOS ----------- 101

E. EVALUATION OF THE IMPLEMENTATION -------------- 102

1. Performance ------------------------------ 102

2. Limitations ------------------------ 105

3. Applications ----------- ------------ 107

VII. BOOTLOADING CP/8-86 PROM THE NBB-80 --------------- 109

A. BOOT RON AND LOADER COISIDERATIONS ------------ 109

B. BOOT RON AND LOACER IMPLEMENTATION ------------ 112

C. EPROM GENERATION --------------------- 115

6

VIII. CONCLUSIONS ------------ ------------------ 1 18

A- IMPLEMENTATION SYNOPSIS------------ 116

8. RECOMMENDATIONS FOR FUTURE OR .------------- 120

C. POTENTIAL APPLICATIONS -------------------- 122

APPENDIX & PROGRAM LISTING OF DIAG8O.&SK 126

APPENDIX B PROGRAM LISTING OF DIAG86S.A86 ------------- 135

APPENDIX C PROGRAM LISTING OF DIAG86.A86 -------------- 146

APPENDIX D PROGRAM LISTING OF MB8OFMT.A86 -------------- 159

APPENDIX E PROGRAM LISTING OF MBBIOS.A86 166

APPENDIX F PROGRAM LISTING O NB8OROE.A86 ------ 187

LIST OF REFERENCES 196

INITIAL DISTRIBUTION LIST 198

7

r

DISCLAIMER

Mlany terms used in this thesis are registered trademarks

cf cUaercial products. Rather than attempt to cite each

individual occurrence of a trademark, all registered

trademarks appearing in this thesis will be listed below,

fo-llowing the firm holding the trademark.

Intel Corporation, Santa Clara, California:

Intel OULTIBUS INTELLBC RDS
Intel 8080 Intel 8086 iSBC 86/12A
iSBC 202 4-8259

Pacific Cyber/letrixs Incorporated, Dublin, California:
Bubbi-Tec Bubbl-flachiae BBB-80 Bubbl-Board

Diqital Research, Pacific Grove, California:

CP/M-80 CP/M 8C/

1. INTRODUCTIi

M .agnetic bubble memory is a new digital storage

technology that offers many significant advantages over

currently existing seccndary storage mediums. Bubble

memories, with high densities and relatively fast access

times, are non-volatile semiconductor devices that provide a

high degree of reliability in harsh environments. This

technology has the potential for a vital and unique role in

both the civilian and military computing environments due to

the combination of characteristics exhibited by magnetic

domain devices.

This thesis presents an implementation of a magnetic

bubble device (MBB-80) utilizing a conventional operating

system (CP/Il-86) and a commercial 16-bit microprocessor

(Intel 8086) . A fully operational system capable of

testing, evaluating, and utilizing a magnetic bubble device

in a standard user environment is presented.

There are four major phases into which this thesis is
- I

organized. The first phase will present an overview of

bubble domain devices tc prcvide an understanding and

evaluation of their potential applications as mass storage

mediums. Chapter 1I will describe the theory of magnetic

9

bubble devices and the current state of magnetic domain

technology. Chapter III will present an evaluation of

bubble memory technology and utilization along with a

justification for the applicability of magnetic bubble

devices.

The second phase will address the low-level interface

requirements for the MBB-80 Bubbl-Beard (produced by PC/N

Inc.) when interfacing with either the Intel 8080 or Intel

80e6 microprocessor. The purpose of this phase will be to:

(1) verify the operational characteristics of the BB-80;

and, (2) design and implement the low-level systems software

necessary to interface the operating system's 1/0 structure

with the magnetic bubble memory ccntrcller.

The thirl phase will address the issues necessary to

implement the interface of the bubble memory system with the

operating system's primitive secondary storage access

rcutines. The tasks necessary in this phase are to: (1)

design a memory organizaticn and management scheme for the

magnetic bubble memory; and, (2) design the interface such

that the magnetic bubble memory appear as a "standard" mass

storage device (disk) to the host operating system.

The fourth phase is the actual interface of the BBB-80

Bubbl-Boards into the CE/M-86 operating system. The

10

mm l I I I I IIj

interfaces and designs developed in the second and third

phases are applied in this phase. A generalized,

table-driven, "basic input/output system" (BIOS) is

developed which will allow the utilization of 9BB-80

Buthl-Boards (as "disks") by the CP/-86 operating system

alcng with conventional flcppy and hard disks.

K

I 11

II. BACEGROUND OF BUBBLE MEMORIES

A. MAGNETIC BUBBLE DOMAINS

The entity known as the "magnetic bubble" has been much

talked about in the context of solid state memory

technologies. This section will present a description of

what a magnetic bubble domain is and will describe some of

its properties. No attempt will be made to present a

cozprehensive explanation of magnetic substances or

maqnetism, but rather the basic theories of magnetic domains

will be put forth.

Certain elements and their alloys (Fe, Co, Vi, Gd and

Dy) along with other substances exhibit the well-known

prcperty of magnetism or, more properly, ferromagnetism

[Ref. 1: p. 619]. This prcperty permits a material's atoms

to achieve a high degree of alignment despite the atoms'

tendency towards randomization due to thermal motions.

Adjacent atoms interact and couple into rigid semi-parallel

. I patterns. These patterns are known as ferromagnetic domain

structures and are localized within a specimen. Materials

can be cut such that their direction of magnetization is

alcng a single axis (viz., along one particular direction)

and are known as uniaxial ferromagnets.

12

Several important prcperties of ferromagnetism are

exhibited when a magnetic sutstance is subjected to an

applied (external) field. First, a rltv increase in the

external field of 0 to 0.01 will cause a sive increase

in the substance's magnetic field of 0 to 1000 [Ref. 2: p.

21. This factor of 100,000 occurs primarily in a long, thin

saiple or in a closed ring of some form. Secondly, if a

sincle, thin, crystal sheet (film) of certain uniaxial

ferromagnetic materials is cut perpendicular to the axis of

natural magnetization (see Figure 2. 1(a)) , the domain

structure is found to be one of wavy, or serpentine, strips

having alternating directions of magnetization which are

perpendicular to the surface of the sheet (Ref. 3: p. 86].

It is the combination of these two properties which

supplies an environment for a magnetic bubble domain. A

thin crystal film as descrited above, in the absence of an

external field, will have a volume of serpentine strips

maqnetized in one directicn which equals the volume of

strips magnetized in the other direction, resulting in zero

n.t maqnetization. Upon the application of an external

maqnetic field perpendicular to the film, the strip domains

magnetized in the directicn of the field will increase in

volume as the oppositely magnetized domains shrink in volume

13

Bubble supporting film

+ (a)

Small applied field (b)

Larger applied field

Figure 2.1 (a) Serpentine Strips, (b) Magnetized Strips,

(c) Cylinders

14

[Ref. 3: p. 86]. This phenomenon is the result of the

process of energy minimizaticn and is shown in Figure

2.1(b). As the external field increases in strength, a

field value will be reached at which the shrinking domains

contract into circular cylinders; it is these cylinders

which are known as "magnetic bubbles." These cylinders are

shcwn in Figure 2.1(c). A further increase in the field

will ultimately result in the total collapse of the

shrinking domains, leaving the film saturated (viz.,

magnetized in one direction only) [Bef. 4: pp. 3-4].

The applied field, known as the bjis field, is essential

for the stability of the bubbles within a substance. The

bias is typically on the crder of 100-200 Oersteds (a unit

used to measure magnetic strength), which can be easily

prcvided by small, permanent magnets. This allows stable

bubble existence independent of any power source, which is

the foundation for non-volatile storage media. The bubble

itself is maintained by a combination of three forces. The

stable equilbrium of the domain is preserved by the

magnetization of the bubble itself producing internal

maqretic pressure which opposes the squeezing force of the

applied field. The bubble domain maintains its circular

shape because of the force of the magnetic surface tension

of the wall which surrounds the domain. [Ref. 2: p. 10]
~15

Clearly, the absence cr presence of a magnetic bubble

domain can be used to represent a zero (0) or a one (1) for

data storage. However, there are several additional

requirements which must be met before this technology can be

considered for use as a data medium. One of these

prcperties is the mobility of magnetic domains. A bubble

will move towards any position which minimizes energy. Such

lccations can be defined and created by having small,

reduced fields of external bias. Unbalanced forces acting

on the wall of the bubble will cause the bubble to move in

the direction of the reduced bias field. By laying out a

"track" of permallcy (nickel-iron alloy) on the magnetic

film and selectively altering the local bias on the track,

it is possible to move bubbles along a prescribed path. It

is important to note that, although this is similar to bits

on a magnetic tape, there are _ mechanical, mcving parts

invclved as the bubbles move along this closed track. The

fact that the bubble domains are only a few microns in

diameter and may move at velocities in excess of several

meters per second can provide data rates in excess of

several megabits per second [Ref. 2: p. 10]. The remaining

requirements of a storage medium will be presented in the

next section. It will be seen that magnetic bubble domains

can meet these requirements as well.

16

3. BUBBLE DOBAIU DIVICES

This section will discuss the basic operations necessary

tc support bubble domain devices. These operations include

bubble propagation, bubble domain generation and bubble

domain detection. Some basic bubble memory device

orqanizations will be presented along with the theory and

prcblems ,,sociated with these organizations.

The effect of a bias field on predefined tracks was

explained as the basis for bubble domain propagation. These

tracks are in fact analogous to conventional electrical

transmission lines in that the track carries a signal

(bubble) to various parts of the system. To meet the needs

of data storage it is necessary to be able to "field access"

the propagation track (viz., access a specific location).

This implies multiple tracks (for more than one bit) on a

buble domain 4evice that are all ccntrolled and

synchronized by one external magnetic field applied to the

entire device. By rotating this field, known as the drive

field, a magnetic wave can be caused to travel through the

device. The bubble domains "ride" this magnetic wave and,

thus, propagation takes place [Ref. 2: pp. 16-17]. Of

course, it is necessary to be able to make the bubble

domains chanqe their direction cf movement. Special

17

perualloy circuits have been designed to provide this

furction. Straight tracks in the form of "T-barn circuits,

combined with special 90 degree and 180 degree corners, fori

a tasic storage array [Ref. 3: p. 87]. The "T" shape is

used because of the magnetic field effects found around the

lorg stem of the "T". Bubbles that move up this stem are

trapped under the crossbar. As the drive field rotates, the

butble follows around the tcp cf the "T", eventually moving

perpendicular to its original direction (see Figure 2.2).

The operation of bubble domain generation involves the

creation of bubbles (writing 1 bits) within the device.

Mcst generation is done by a process called nucleation. A

current of a few hundred milliamps, maintained for

approximately 100 nanoseconds, is used to create a localized

field in opposition to the bias field. This reverses the

magnetization on the film, which causes the creation of a

new bubble -- its size and positicn being finally stabilized

by the bias field (Ref. 4: pp. 3-7]. It is noted that the

prccess of nucleation is temperature sensitive and an

implemented system must provide a means of varying the

generation current to meet large temperature changes (failed

nucleation or multiple nucleations can occur).

18

U

a3Rotating 4 4

field A bubble Permalloy
pattern

Figure 2.2 "T" Bar Movement

19

There are several apprcaches to the problem of bubble

domain detection, or reading bits. One technique is a

non-destructive readout scheme. k magnetic dcsain has

asicciated with it a small magnetic field. ks the bubble

passes a suitable sense aaplifier detector circuit, there

will be a small change in the resistance of the circuit due

to the magnetic field of the bubble. This detecter is known

as a maqneto-resistive sensor and has the advantage of being

a passive (no overhead) detection scheme. Unfcrtunately,

the "signal" that is measured, or read, is but a fraction of

the total power, of the bubble domain. The second approach

is one of a destructive readout. The bubble domain is

side-tracked onto a special detection/generation track.

Here the full power of the domain is sensed (causing the

destruction of the bubble if one is present) for a stronger

readout signal. The bubble (if present before readout) must

now be re-generated and returned to the storage track [Ref.

5: p. 41]. This re-nucleation cbviously requires more power

and more supporting devices than the passive readout

schemes.

The operations possible with magnetic bubble domains can

result in a wide variety of architectures fcr bubble

devices. Some of the more scphisticated designs will be

20

presented in Section D cf this chapter. An explanation of

the first, and simplest, bubble domain device will be

discussed here.

An analysis of the magnetic device from a top-level view

reveals a basic structure as seen in Figure 2.3. All

devices will correspond to this structure and, by some

means, implement the functicnal blocks as seen in this

figure. only the function of redundancy management was not

discussed in the above sections. This is basically the

issue of how manufacturing techniques result in a certain

chip yield (viz., the useatl pcrticns of each bubble chip).

It is sufficient to say that various mechanisms are

available to provide redundant storage capability in a

device and to keep a map cf this redundancy. One method

will be discussed in Chapter IV, Section 1.

Maqnetic bubble devices are serial storage devices with

block access capabilities. They are similar to ccnventional

electromechanical media, but with several major differences.

Butbles can he stopped and started at the bit level while

most devices are block-oriented at a larger data volume.

Butbles do not have mechanical addressing aids like

start-of-tape, disk tracks and sectors or optically-sensed

index markers. Some other means of identifying and locating

21

Coil drive

tijming Bbl

Sense

,Trans fer
replicate

Figure 2.3 Basic Magnetic Device Functions

22

data is necessary. it is the chosen means of addressing

that influence.. the device design of bubble storage.

The simplest magnetic bubble domain device uses the

shift register organization. This is depicted in Figure

2.4(a). Bubble domains rotate around a fixed, closed loop

with a simple generator and detector circuit. Average

access times require propagaticn of a bubble through half

the register. Transfer rates are dependent cn serial

bit-by-bit transfer through the detector. This simple

device points out the three operational characteristics

(which the shift register does not address efficiently) that

influence the design of buble devices: (1) need for high

data density; (2) fast access time; and, (3) fast transfer

rates.

The major/minor loop chip organization depicted in

Figure 2.4(b) was the first attempt to address the need for

improvement in these characteristics. This scheme is

basically one of block transfer between the mincr storage

lccps and the major operational loop. Si-directional

transfer gates allow a block of data equal (in bits) to the

number of minor loops to be transferred to/ftom the major

lccp in a single operation. Transfer of all bits in

parallel is achieved by a pulse to the coaacn transfer bar

23

Generate (a)

Detector

i Replicate/transfer

Gene rate (b)
Detector

Replicate/trans fer

Major loop ; IIL

Trans fe r
in/out

Minor loops

Ai

Figure 2.4 (a) Shift Register Architecture,
(b) Major/Minor Loop Architecture

a /o7

b tween the major loop and the minor loops. The minor loops

rotate in synchronization with the major loop. The major

locp makes one revolution to perform its operation, then the

data on the major loop is read tack to, or written into, the

mincr loops. This clearly has the advantage of being a

simple, easy-to-build device that provides some degree of

increased data storage and access times. However, this

device, implemented as a single entity, still suffers from

serial readout ai.I slow external transfer rates.

The next section will digress to discuss the history and

development of bubble domain device technology. It is

presented merely as a historical perspective to provide the

context for the discussion cf architecture and technology in

Section D of this chapter.

C. HISTORY AND DEVELOPMENT

Bubble domain devices are a relatively new technology.

The discovery of garnets, a glasslike substance, in 1956,

allowed the fabricaticn cf an environment condasive to

maqnetic domains. In 1959, the first bubble and serpentine

domains where observed in certain ferromagnetic substances.

A. H. Bobeck, of Bell Telephone Labcratories, presented the

first description of tubble devices at the 1967

International magnetics conference. Bubble domains were

ianored at that time. [Ref. 6: p. 3)

25

i ik

The debut of the bubble domain cccured in 1969, when

Boteck, at the INTER8AG conference, updated his 1967

presentation. He clearly showed the feasitility of

ccntrolled bubble propagation in a shift-register device,

along with bubble generation, replication and detection.

For the first time, bubble domains were seen in the context

of mass memory media. The technical interest generated at

that conference soon had an effect on the business

community.

Bell Systems, where the first bubble devices were

designed, utilized this technology for repertory dialers,

voice message recording and fixed-head-file replacement.

Hitachi was the first company to announce a magnetic bubble

memcry product (Oct 1975) which was an 18-chip, 32K byte

unit intended for office machines. Hewlett-Packard quickly

fcllowed with applications in desktop calculatots.

Texas Instruments intreduced the first general purpose

bubble device in 1977. This is a 92K bit memory module

which they utilized in their portable terminals. It is

interestinq to note that at this time several of the largest

sesiconductor memory manufacturers (Intel, Signetics,

Rockwell International and National Semiconductor) entered

the arena of tubble devices.

26

The early 19804s have brought the advent cf 1N byte

buttle devices with transfer rates in excess of 800

,Kbits/sec. A detailed analysis and comparison of the

different memory technologies and applications will be

presented in Chapter III. The historical development of

buttle memory 44vices can be referenced to the basic

characteristics and operations presented in this chapter.

The drivinq inpetus has been cn prcviding denser packaging

(more bits), faster access times and higher transfer rates.

All of these factors have been necessarily constrained in

the context of marketability and manufacturing costs. These

considerations have produced many newcomers into the field

alcnq with revolutionary designs and architectures for

maqnetic bubble devices. However, the development of a new

technclogy that must simul aneously compete with established

technologies (semiconductor, disk) has proven to be a

liwitinq factor in the advancement of magnetic bubble

devices (TI and lational withdrew from the market in 1981

for reasons of profitability).

D. CURRENT TECHNOLOGY AND ARCHITECTURE

The attempt to improve the performance characteristics

of bubble domain devices has proceeded along three distinct

paths. First, has been the improvement of the components

27

j

making up the bubble device itself (viz., sense amplifiers,

garnet substrates, etc.). Secondly, there has been much

effort directed at finding an optimal architecture for the

basic major/minor locp organizaticn. Finally, the extensive

use of support circuitry and sophisticated controllers is

presenting a more simplified logical view (as seen

externally) of magnetic bubble devices.

The design of physical compcnents for the bubble devices

is inherently coupled to the issues of magnetism, field

electronics and garnet manufacture. An extensive discussion

of these topics, however, is not within the sccpe of this

thesis. Therefore, only menticn cf the areas cf work in

current research will be made here. The coil drivers, as

oriqinally described, produced a sine wave which propagated

butble domains throughcut the device. These sine waves,

which start and stop precisely, are difficult to implement

at a low cost and have, therefc:e, been replaced by devices

that generate triangular or trapezoidal wave forms [Ref. 5:

p. LI]. Bubble detection, whether destructive or

non-destructive, has non-trivial current requirements for

the sense amplifiers. A reduction in the number of and

power requirements for current sources is a primary goal of

detection circuit design. Finally, the issue of high bit

28

~I

density per unit cost, as in all memory devices, is being

addressed by new garnet substrates. The work in this area

has the goal of reducing the size of the bubble domains and

putting as many tracks as possible cn a chip while avoiding

inter-bubble interference [Ref. 7: p. 63]. Current

technology is supporting I 4bit devices with areas of less

than cne square centimeter and with a bubble domain diameter

of two (2) microns.

The first bubble domain device architecture, the shift

register, suffered from two main inadequacies: (1) a single

defect in the shift register chain resulted in a bad chip;

and, (2) data just entered had to be cycled through the

entire shift register chain to be read, resulting in slow

data access. The major/minor loop design addressed these

problems. Data is generated in a major loop, circulated,

read and rotated back to be restored in the original minor

loop positions. Shorter cycle times are achieved if this

need to restore data is removed. This idea was incorporated

into the "block replicate, architecture. This is a

multilcop arrangement where the minor loops communicate with

a read track via replicate/transfer gates, allowing reading

without disturbing the mincr loop data (see Figure 2.5).

Erasure is accomplished by activating transfer without

29

Detector

Read track

Replicate/
transfer

Minor loops

Transfer

in . ,

Write track

Generat Annihilate

Figure 2.5 Block/Replicate Architecture

30

replicate. A separate write track allows block data to be

written to the minor loops via transfer-only gates. The

idea behind the replicate/transfer gate is that a bubble

domain is replicated (by splitting or nucleating a new

butble) and then transferred to the read track for

prccessing by the detector. The conventional major/minor

locp design did this one bit at a time on the major loop

whereas the block/replicate desiqn replicates, in parallel,

all the minor loop bits in a block.

The physical makeup of bubble domains and their

resulting interacticns requires that minor loops have bubble

dowains two (2) bits apart (viz., an empty position between

every position where there could be a domain).

consequently, a majcr lcop or read/write tracks could only

generate on every other cycle, that is, they would cycle

once uselessly while the minor loops cycled to bypass the

empty positions on the major loop. Data can be read on

every cycle by splitting the data storage into odd bi:s

(toops) and even bits (loops) (Ref. 3: p. 95]. This

architecture is depicted in Figure 2.6. To perform a write

operation, the entire blcck is generated in bcth write

tracks. The odd and even generate tracks are aligned

simultaneously with the minor loops and the write takes

31

!

C: 0

to w
00

44.

32

place. To perform a read operation, the replicated gates

are activated on the odd and even storage loops. The two

tracks are one bit apart so that the odd and even tracks are

interlaced as they go to the detector, providing a read on

every bit position.

All the multiloop architectures use redundancy to solve

the problem of defects in chip manufacturing. Extra storage

capacity is provided on the chip by having more minor loops

than are actually required to meet the device memory

capacity. Bad loops, normally discovered in factory

testing, are located and put into some form of a map.

Defective loop addresses are usually stored in a PROM within

the bubble controller cr in some cf the redundant loops

themselves. [Ref. 3: p. 87]

To become an economically practical and versatile

device, it is essential that bubble memories present a

furctionally simple and jojj, view to potential users.

Much effort has been put forth in the area of support

circuitry which handles the low-level functions involved

with the management of bubble devices. The biggest addition

to the support circuitry has been in the area of bubble

memcry controllers. These controllers (which are usually

40-Fin HMOS devices) provide bus interface, generate all

33

system tiling and contrcl, maintain memory address

infcrmation and process the userls external software

requests and commands to the bubble devices (Ref. 8: p. 57].

The conceptual purpose of the controller is to make the

maqnetic bubble memory lock like a peripheral to the host

computer. The sense amplifiers used for detection have been

inccrporated to include multi-channel capabilities (viz., to

handle parallel readouts frca mcre than one device to allow

hiqh data transfer rates). This results in a logical memory

orqanization which can span "n" devices, where "n" is the

number of bits in the host system's word size or data bus

size. Data protection and save-circuitry have been provided

to prevent bubble contamitaticn in the event of a power

lcss, which can lead to a situation where loops are not

rotated back to their starting point. This is necessary for

correct addressing. The contrcller, utilizing a bad-loop

ma;, also automatically substitutes redundant loops for bad

lccps on a chip.

The current architecture and technology of bubble domain

devices are influenced by the need to compete with existing

seccndary memory devices. Consequently, much effort is

being put into both the physical manufacturing of the bubble

devices as well as into the logical architecture and user

34

interface. It is clear that any architecture must allow

magnetic bubble memories tc be easily interfaced to existing

computer systems.

The next chapter will provide an analysis and comparison

of magnetic bubble devices to current mezory technologies,

with particular emphasis on the specific strengths and

weaknesses of magnetic devices. Applications fcr magnetic

devices will also be discussed in depth.

F 3

35

III. APPLICABILITY O BAGIfTIC BUBBLE BENOBIES

A. CCNPAEISON OF BASS STORIGE TECHEOLOGIZS

Magnetic bubble memories should not be considered to be

in direct competition with existing, well-established forms

of ncn-volatile storage. Bather, bubble memories should be

vieved as a secondary storage technology which can fill the

well known capacity/cost and performance/cost gaps in

conventional memory hierarchies.

In Fiqure 3.1 are plotted the areas inhabitable by a

wide range of memory technologies. As can be seen in Figure

3.1, there is a large gap between core technology and

fixed-head disk technology. At present, attempts to fill

this gap are being made by electron-beam accessed memories

(EBAN), charge-coupled devices (CCD) and magnetic bubble

meMcries (MBM). Although EBA! probably has the lowest

pctential ccst per bit cf the three technolcgies, it

requires fragile vacuum components which severely limit

apFlications.

CCD technology has not sufficiently surpassed dynamic

RAN technology to become preferable from either an economic

or a performance standpoint. Currently, CCD memory access

tizes (approximately 100 uicrcseconds) are much slower than

36

ul (a
(1) u

UU

oo a3 a

u ai

'i 0 s

.14

0) to

z w 01

(a 0
Z- .

UOU

00

o =o
00

01qU 4Tvv IUIU V0

C37

..........

thcse of semiconductor BAN (70-2000 nanoseconds). An

additional Jisadvantage of CCD memory is its susceptibility

to alphaparticle radiaticn. As is the case with RAN

technclogy, as memory densities have increased, the

capacitance needed to store the charge for each bit has

decreased, making it more probable that an alphaparticle

strike will cause a soft error. (Ref. 9)

Magnetic bubble memories, cn the other hand, have the

advantages of non-volatility, higher density and lower cost

per bit over CCD and BAN technologies, and the advantage of

solid-state technology over EBAN. Evaluation of the

performance of magnetic bubble memories is usually

accomplished utilizing the same parameters as those used for

evaluation of floppy disk devices. Valid comparisons can be

made between the performances of the two technologies

because of their common roles as secondary storage

technologies.

Magnetic bubble memories are organized as shift

registers for block access, with the natural block size,

referred to as a page, being equal to the number of minor

locps. Access to lata is accomplished by shifting bubbles

in the minor loops and transferring the appropriate page to

the major loop. The data is then read or written by

38

shifting bubbles around the major loop. This organization

allcws for the computation cf both a seek time and an access

time to parallel disk performance measures of the same

names.

The seek time of disk systems is normally taken to mean

the time it takes tc mcve the read/vrite head to the track

ccntaininq the desired data. This is analogous to rotating

the minor loops in a magnetic bubble device to place the

desired page on the major loop. Seek time for a bubble

meucry device is, therefcre, dependent on the number of

shifts required in the mincr Icops and the shift rate of the

device. Current bubble memory architectures contain from 64

tc 4096 pages in the miner loops and have a relatively

ccommcn shift rate of 100 KHz [Ref. 10: p. 29]. Taking

wcrst case to be a ccmplete rotation of the minor loop at 10

microseconds per shift results in worst case seek times of

6.4 - 41.0 milliseconds. Assuming half of these values to

be an average yields average seek times of 3.2 - 20.5

milliseconds.

Ccmbining this seek time with the time required to

rotate to the first bit of data in the read or write track

yields the data access time fcr a magnetic bubble device.

By assuming an average major loop size of 144 bits (the

39

actual major loop size of the TIB0203 92K bit device) and

applying the shift rate of 100 KHz, a worst case read/write

delay time of 1.44 milliseccnds is obtained. Combining this

delay with the previously computed seek tine results in

average access times of 3.92 - 21.72 milliseconds for

magnetic bubble devices, which is considerably faster than

the average access times of 115 - 500 milliseconds for

floppy disk devices. [Ref. 11: p. 1]

The data transfer rate for a magnetic bubble memory is

determined by the number of bits per page, the shift rate of

the device and the number of cycles required to transfer the

paqe of data out of or into the device. Basic transfer

rates are 40 - 100 Kbits/second for individual magnetic

bubble device organizations. These rates may be greatly

improved by operating magnetic bubble devices in parallel

(mcre than one device at a time). Subbl-Tec's HDC/HDB-11

system, for example, utilizes four 1M bit bubble devices in

parallel to attain a peak transfer rate of approximately 800

Kbits/second (Ref. 10: p. 29]. Such uses of parallel

implementations allow magnetic bubble systems tc achieve

transfer rates in excess cf those cf floppy disk devices

(125 - 500 Kbits/second).

40

The solid-state nature of magnetic bubble devices is a

great contributing factor to their reliability. Since there

are nc moving pats, the maintenance normally associated

with electromechanical devices is avoided. An additional

characteristic of magnetic bubble technology is very low

error rates. Manufacturers' tests have produced bard error

rates of 1 in 1 trillion bits and soft error rates of I in 1

billion bit's IRef. 11: p. 2]. A hard error occurs when a

bit is read incorrectly during several consecutive read

operations. Soft errors occur when a bit is read

inccr:ectly cn one read cperation and correctly read on

subsequent operations.

The final area of evaluation deals with the physical

characteristics of the devices. Some additional properties

attributable to the solid-state nature of magnetic bubble

devices are low power requirements, light weight and

ruggedness. Magnetic bubble memories may be sealed from the

outside world and, thus, are immune to the effects of dust,

humidity, dirt and vibration. Like mcst other technologies,

however, magnetic bubble memcries do suffer temperature

limitations. This limitation is due to the required

matching of the temperature coefficient of the chip garnet

to that of the permanent magnet. Currently, the specified

t41

operating temperature range for most bubble devices is from

0 tc 50 degrees Celsius but ncn-cperating temperatures may

range from -40 to +85 degrees Celsius without lcss of data

(Ref. 11: p. 21.

magnetic bubble memory technology can provide a high

density, low power, rugged, reliable and non-volatile data

stcraqe media. It is expected that the cost of bubble

memcry devices will continue to decrease and their density

will continue to increase, making them an even more viable

alternative mass storage technology [Ref. 12: p. 38].

B. APPLICATIONS OF MAGNETIC BUBBLE ME1ORY

The variety of applications for magnetic bubble memories

is steadily increasing. As system designers begin to take

advantage of the properties of magnetic bubble memory

devices. increasing numbers of bubble memories are being

designed into systems, added on as back-up storage or used

to replace other storage technologies. The variety of

applications for magnetic butble devices includes wo-d

processing, voice synthesis, portable terminals,

commumications, numerical machine tool controllers,

aerospace and defense applications as well as others (Ref.

12: p. 381.

142

_ _ _ _ _ _

The high performance and low cost of magnetic bubble

devices are the two major characteristics driving most of

the applicaticns. Current prices for bubble memories are

roughly 100 millicents per bit with projected decreases to

less than 30 millicents per bit in mid 1982 [Ref. 10: p.

261. Access times of currently available bubble memories

are approximately ten times faster than thcse of movable

head disks and the data transfer zates of the two

technologies are comparable [Ref. 13: p. 53]. Some magnetic

buttle memory systems have, however, attained data rates of

96 Mbits/seccni and a system addressability of 4096H bits

[Ref. 14: p. 141]. Another performance advantage is the

simple addressing scheme which requires only an address and

a read or write signal. It is estimated that a bubble

memcry contrcller would have 1/4 to 1/2 the complexity of an

equivalent disk controller [Ref. 15: p. 37].

Another major contributing factor to the increase in

applications of magnetic bubble devices has been the

development of custom interfaca and support circuits. These

:-teqrated devices free the system designer from the need to

beccme intimately familiar with the electrical and magnetic

prcperties of bubble memories, thus, allowing mcre time to

be spent on the system aspect of the appiication. There are

43

alsc many complete magnetic bubble memory system assemblies

which can be plugged directly into DEC LSI-lls, Intel

MULTIBUS systems, TT 9900s, 5-100 systems and STD-bus

machines [Ref. 10:p. 26]. Custom constructed systems

require no separate chassis or power supply and can be

ccnstructed enti.ely cn printed circuit boards that can plug

directly into existing bus structures.

Research conducted by IBS (San Jose, California) has

indicated that magnetic bubble memories must have a capacity

of at least 4M bits in order to challenge RAN devices on the

basis of cost. Bubble memory devices are approaching this

density with 1M bit devices currently on the market

(TIB1000, Intel 7110 and National NBM2011). Rockwell has

demcnstrated a 4M bit device developed under military

contract and Bell Labs has fabricated an experimental 11.5d

bit bubble device which is only 1.3 inches square. [Ref. 9]

Since magnetic bubble memories are of a solid-state,

non-volatile technology, they are ideally suited for

pcrtable applications as well as for providing additional

stcrage for traditicnal and parailel processing systems.

The compactness, low power requirement, quietness and low

maintenance requirement have made bubble devices ideal for

office equipment applicaticns. Idditionally, the ruggedness

'4

of the devices, whom combined with the above

characteristics, makes them ideal for use in the harsh

environments often encountered in control and military

applications.

IV. DESCRIPTION OF THE DEVELOPMENTAL SYSTEM

A. TIB0203 MAGNETIC BUBBLE ARIOR!

The TIB0203 magnetic-tubble memory is a non-volatile,

92,304 bit, bubble memory chip. The chip is manufactured as

a 14-pin dual-in-line package which contains the coils for

prcviding a rotating magnetic field, a permanent magnet to

maintain data storage and a magnetic shield structure. The

TIE0203 is designed as a ccnventicnal major/minor loop

architecture with 144 minor lcos (circular shift registers)

of 641 bits each. Transfers of data to or from the single

majcr loop are done in parallel. The major loop contains

the detector circuits as well as the generate, replicate,

and annihilate control functicns. [Ref. 16: p. 11]

Detection is acccmplished in a passive scheme utilizing

tvc magneto-resistive elements. 1 e elements are cut of

phase with each other and cperate on alternate cycles (viz.,

alternately reading bit positions). Noise produced in the

iAcircuit due to circuit layout, control pulses and from the

maqnetic fields is reduced by cancellation when the elements

are used vith a bridge circuit and an external differential

amplifier. (Ref. 16: p. 14)

46

Generation of bubble domains is done via nucleation as a

specified current pulse is sent through the generate loop.

Transfer-in is accomplished as follows: (1) a data string

equal in length to the number of minor loops (called a page)

is generated; (2) this string is shifted such that the first

bit is positioned over the first minor loop; (3) the

transfer gates are energized. Each of the 641 minor loop

page positions is useable. Transfer-out is accomplished in

the reverse manner. Once a page is on the major loop it is

eligible for one of two operations in a serial bit-by-bit

manner: replicate or annihilate. [Ref. 16: p. 11)

A replicate operation causes the bubble domain to be

stretched, then split in twc with one bubble diverted to the

detector and the other diverted back to the majcr loop and

subsequently to the minor icop for storage. This procedure

prcvides for a non-destructive readout. Annihilation is

prcvided by transfering the bubble domain off the majcr loop

and into the detectcr track where it is propagated off the

chip.

The chip is manufactured with 157 minor locps, which

prcvides a redundancy of 13 minor loops. Defective minor

locps are identified at the factory and a map is printed on

the device before shipment. The map has the addresses of

47

defective loops printed in hexadecimal and it is the

responsibility of the controller to prevent the use oi these

bad loops. (Ref. 16: p. 12]

The coil drive for the TIB0203 uses triangular wave

forms generated from two orthogonal coils that are driven 90

degrees out of phase. A cycle is the :ime required for the

magnetic field to rotate 360 degrees. Minor loops are

spaced two bits apart with one bit separation on the major

loop. Therefore, all major lcop cperations are performed at

half the drive frequency. The drive frequency for the

TIE0203 is 100 KHz. [Ref. 16: pp. 13-14)

The TIB0203's components and specifications are

ccgpletely described in Reference 16, the OTIB0203

Magnetic-Bubble Memcry and Associated Circuits Manual."

operating characteristics, block diagrams and environmental

co.ditions for the function timing generator, sense

amplifier, function driver, coil driver and theraistor are

also included in this manual.

B. PC/H EBB-80 BUBBLE MEMORY SYSTEM

MBB-80 Bubbl-Board is the registered trademark of a

magnetic bubble device marketed by Bubbl-Tec, a division of

Pacific Cyber/Metrixs, Inc., located in Santa Clara,

Califcrnia. The MBB-80 is a complete bubble aemcry storage

48

system designed to be compatible with all 8-bit and 16-bit

micrccomputers that utilize Intel's MULTIBUS architecture.

The board provides 92,304 eight-bit bytes of non-volatile

memory as well as all required control logic and buffering

necessary to interface to the MULTIBUS system.

The entire system is contained on one multi-layer,

printed-circuit board. The printed-circuit board has the

standard MULTIBUS dimensions and requires one card-cage slot

on the MULTIBUS. The board is built around eight (8) of the

TIE0203 bubble memory devices described in the preceding

section. All necessary support chips are included on the

sinqle board. The functicns cf the controller are provided

in hardware and include the following primitive commands:

Fill Buffer Read Multiple Pages
Empty Buffer Initialize
Write Single Page Read Status
Read Sin le Page Enable/Disable Interrupt
write Multiple Pages Reset

Host interface with the controller is via mencry-mapped I/O,

using sixteen (16) consecutive user-defined locations in the

CPU address space. The MOB controller can be set to

recognize any sixteen consecutive addresses cn a 16-line or

20-line address bus. These sixteen addresses correspond to

sixteen registers in the bubble memory ccntrcller which are

utilized to read status information, set NBE-80 board

configurations and perfcrm read/write operations.

49

64__

The MBS-80 typically consumes less than 20 watts of

power. Voltage requirements consist of +5 volts at 1.5

amperes, +12 volts at 200 ailliamps and -12 volts at 700

milliamps. Logic is provided to protect stored data during

power-up, pover-down and when unexpected power failures

occur. The MBB-80 can operate in a temperature range of 0

to 50 degrees Celsius. The magnetic environment is less

than 20 Oersted at the bubble device and the toard weighs 18

ounces. A complete description of the MBB-80, its

printed-circuit board layout and schematic diagrams are

ccrtained in Reference 17.

C. DEVELOPEINTAL SYSTEM

The INTELLEC Double Density Microcomputer Development

System (INTELLEC DD MDS) with an iSEC 86/12A single-board

computer, an iSBC 202 double density disk controller and the

CP/M-86 (version 1.0 as modified by Reference 18) operating

system (hereafter referred to as CP/M-86) is the host system

for this implementation. This system is located in the

Microcomputer Laboratory at the Naval Postgraduate School,

Mct ersy, California, and will be described in greater

detail in the next section. This hcst system was found to

have a severe inadequacy in the area of software development

tocls. The current CP/M-86 operating system had no

50

interface to a printer. The CP/S-86 resident text editor

(EE) consists of relatively primitive commands which do not

allow a wide range of text manipulation. For these reasons

an alternative system had to be chosen for use in software

develcpment.

The text editor chosen was the screen-oriented editor of

the Altos UCSD Pascal (Version 1.4b) system. Required Intel

80eO and Intel 8086 assembly language programs were written

in files created utilizing the Pascal system editor. The

overall efficiency of software development was greatly

enhanced by the use cf this editor. Once a file was

corpleted, it was transferred to the Altos CP/M-80 (Version

2.2) system by executing the 8080 assembly language program,

CPXFER, which executes under CP/6-80 (hereafter referred to

as CP/M). CPXFER is a Naval Postgraduate Schcol (IPS)

Mlicrocomputer Laboratory utility program that provides for

the intersystem transfer cf formatted files between the

Altcs CP/4 and Pascal operating systems.

Once transferred to the CP/M system, Intel 8080 and 8086

assembly language programs could be assembled utilizing the

standard, CP/M resident, Intel 8080 assembler (ASK) or Intel

80e6 cross-assembler (&$86) , respectively. Err')rs

enccuntered during assembly could be corrected utilizing the

51

CP/N resident editor (TED) and a corrected copy cf the file

transferred back to the Pascal system for purposes of

consistency. Once a program is successfully assembled it is

ready to be transferred to the INTELLEC Dr MDS for

execution.

The Intel 8080 or 8086 executable files (.CCM or .CMD

respectively) are transferred to the INTELLEC DD 8DS by

utilizing the NPS Microcomputer Laboratory utility program

called SDXFER for intersystem transfer of files tetween the

single density INTELLEC NDS and the INTELLEC DD MDS. Files

can be transferred directly frcm any CP/M compatible disk,

on either drive of the single density MDS, to any CP/M

compatible disk on either drive of the double density MDS,

utilizing SDXFER.

All complete assembly language programs are maintained

on the Altos UCSD Pascal system disks only. The Altos CP/M,

double density LDS CP/M and double density MDS CP/,I-86

system disks contain cnly executable files.

D. IBPLENENTITION HOST SYSTEM

The final implementation utilizes the previously

mentioned host system ccnsisting of an INTELLEC Double

Density MDS system and iSBC 202 disk controller, both under

the control of an iSBC 86/12A single-hoard computer, and the

52

CP/M-86 operating system. Initial low level but.le memory

testinq was conducted utilizing the INTELLEC DD MDS and its

rasident Intel 8080 microprocessor. After initial testing

of the device, all remaining development, testing and

Implementation utilized the iSBC 86/12k and its Intel 8086

microprocessor instead of the Intel 8080.

The INTELLEC DD MDS is a coordinated, complete computer

system designed around the Intel 8080 microprocessor. The

standard INTELLEC DD MDS system consists of an Intel 8080

microprocessor, two (2) 32K byte UAd memory modules, a

monitor program with six (6) fully implemented I/O

interfaces and a front panel control module, used to provide

a 256 byte bootstrap program, the qight (8) level bus access

control circuitry and a real time clock. These system

modules are contained in an eighteen (18) card chassis which

features the Intel MULTIBUS, which supports multi-processor

confiqurations and allows for "master-slave" =elationships

between modules. The one addition to the standard system is

the use of an iSBC 202 double density disk controller nodule

to handle the dual flcppy disk drives. (Ref. 19]

As previously mentioned, once past the initial testing

phase, the INTELLEC DD MDS system was operated with the iSBC

86/12A. This was accomplished by removing the two memory

53

boards and the Intel 800 CPU board and placing the iSBC

86/12A in a bus-master slct (an odd numbered slot) in the

INTELIEC DD MDS chassis. the iSBC 86/12A is a single-board

microcomputer based on the Intel 8086 16-bit microprocessor.

Included on the board are 64K bytes of dynamic RAM, three

prcqrammable parallel I/O por.s, programmable timers,

priority interrupt ccntrcl, serial ccmmunications interface

and MULTIBUS interface control logic. [Ref. 20]

The CP/M-86 operating system utilized with the host

system is a product of Digital Research. The specific

operating system used was Version 1.0 with the modifications

made in Reference 18. CP/M-86 is a microcomputer operating

system for Intel 8086 based micrccomputers. CP/M-80, the

predecessor of CP/M-86, was designed for Intel 8080 based

microcomputers and, as nearly as possible, file

compatibility between CPF/M-80 and CP/M-86 has been

maintained. CP/M-86 provides built-in utility commands and

transient system programs. Additionally, the user has the

ability to execute use:-defined transient programs. The

system transient programs include a dynamic debugger

(DCT86), a primitive text editor (ED) and an Intel

compatible assembler (ASM86). (Ref. 18]

54

The entire implementation host system is located in the

Sicrocomputer Laboratory at the Naval Postgraduate School,

Mcnterey, California. Each of the individual components of

the system (INTELLEC DD MCS, iJS8C 86/121 and CP/M-86) is

described In great detail in the reference listed after the

di-scussion of the component.

55

V. LOW-LEVEL BUBBLE DEVICE INTERFACE

A. INTEL 8080 IOPLEMENTATIOB

Prior to interfacing the MBB-80 Bubbl-Board with the

iSEC 86/121, initial testing was ccnducted by interfacing

the [BB-80 with the standard INTELLEC DD MDS system and its

resident Intel 8080. The Intel 8080 was chosen for initial

MBE-80 testing because of the authors' familiarity with

Intel 8080 assembly language and because of the availability

and utility of the existing CP/M-80 operating system and

su~pcrt programs (viz., DDT and TED).

Before any software interfacing or testing could be

attempted, the hardware interface between the MBB-80

Bubbl-Board and the INTELLEC DD MDS system had to be

ccnstructed and verified. This interfacing required the

modification cf power circuits within the NDS system and

necessitated the addition of a manual power-protect switch.

The mcdification of power circuits was required to provide

the 0.550 amps at -12 volts required by the MBB-80

Bubbl-Board circuitry. The remaining power requirements of

the MBB-80, 1.0 amps at +5 volts and 0.12 amps at +12 volts,

are available on the standard MDS system's bus. The manual

power-protect switch was provided on an additional

56

development board and was required to protect the bubble

devices during normal power-up and power-down. Bubble

device contamination, as described in Reference 17, can

result if the bubble devices are accessed while the power

supplies are not within the specified tolerance of plus or

minus 3 percent. The manual switch provides protection only

during normal power-up and power-down. A more comprehensive

power-protect system will be needed to prcvide full

prctection against inadvertant power loss in a production

system. [Ref. 171

Software interfacing and testing of the MBB-80 was

ccnducted by writing and executing an Intel 8080 assembly

languaqe program called DIAG80.ASK (a program listing of

DIAG8O.ASM is contained in Appendix A). This program

utilizes sixteen (16) consecutive addresses, beginning at a

prcgram defined bubble memcry ccntrcller base of 04000H, as

reqisters for communication with the MBB-80. The Inhibit

ROE/RA signals provided by the bubble memory controller

allcw the placement of the controller base address and the

sixteen registers anywhere in the on-board 64K bytes of RAN

nct in direct conflict with CP/M-80 usage.

Initial attempts at execution of DIAG8O resulted in

premature program termination. Attempts at debugging the

57

program by using DDT failed because single-stepping through

the program resulted in pc execution. Full-speed

execution, however, continued tc result in premature

termination at unpredictable and unrelated points in the

prcqram, indicating either a timing or a device

compatibility problem. Further investigation revealed that

the termination of execution was accompanied by a bus

timeout signal from the MDS system (the bus timeout signal

is initiated when a bus request is made and no

acknowledgment signal is received within a specified time

interval).

Monitoring various signals with an oscillosccpe led to

the detection of an inconsistency between the monitored

signals and the specifications on the MBB-80 circuit diagram

prcvided in Reference 17. while checking the comparators

(utilized to determine if an address on the bus is that of a

bubble memory controller register), it was determined that a

signal of some sort was present on pin 7 of each of the

three comparators. The circuit diagram indicated that these

pins should all be connected to the common board ground.

Upcn contacting the designers cf the MBB-80, it was learned

that the circuit diagram currently being distributed was for

version B of the MBB-80. The correct circuit diagram, for

Version D, was acquired and testing resumed.

58

During subsequent calls to Pacific Cyber/setrizs

personnel to confirm or question findings, it was learned

that some special-purpose circuitry was connected to the

ccmparators. This circuitry had been included for a special

application design of the MBB-80 and was incorporated onto

all bcards currently being distributed. we were given the

assurance of EBB-80 design personnel that this circuitry was

in no way affecting the operation cf our Bubbl-Board and

that we could verify this by "grounding" pin 7 of all of the

ccmaarators. Temporary "grounding straps,, were placed on

all of the comparators to see if there was any affect on the

operation of the MBB-80. Subseguent attempts at executing

DIAG80 were all succcssful. Pacific Cyber/Metrixs personnel

were informed of our findings. As a result, the designers

of the MBB-80 are cur:'.ntly considering the inclusion of a

manual switch on future MEE-80 boards to allow the user to

select or bypass the special-purpose circuitry.

Vith DIAG80.ASM executing properly, initial testing of

the MBB-80 was continued. Information was written into and

read from pages of each device to verify that the bubble

devices were error free. Additionally, information was

written into the devices and power removed from the MBB-80.

The IBB-80 was left for a 24-hour period and then lata

59

retention was verified in each bubble device by reading back

the previously stored information. Operation of the 8BB-80

was satisfactory and the Icw-level read, write, controller

initialization and device initialization routines had been

verified to function correctly.

With initial MBB-80 interfacing and testing successfully

completed and the low-level routines verified, advanced

implementation and testing with the iSBC 86/12A was begun.

The low-level routines were available for direct translation

into Intel 8086 assembly language and the DIAG80.ASM program

available as a model for future program constructicn.

B. USE OF THE CP/M-80 BBB-80 DIAGNOSTIC PROGRAN

The CP/M-80 diagnostic program, DIAG8O.ASK, was designed

and written for the purpose of testing the hardware

interface between the 88-80 and the INTELLEC DD SDS system.

This program provides low-level routines which allow the

user to verify correct write and read operaticns tc and from

the BB-80. Although not originally intended to serve as

such, DIAG80 can alsc serve as a low-level debugging tool to
aid in systems program development.

DIAG80 is executed by executing the DIAG8O.COM file

located on the CP/8-80 system disk. Execution will cause

the S8B-80 ccntroller and all eight (8) magnetic bubble

60

devices to be initialized in accordance with Reference 17.

The MEB-80 controller base (defined in DI&G80 by a constant)

must be set to 04000H utilizing the address selection

switches on the MBB-80. The program will then, at the

discretion of the user, cause an eighteen (18) byte page to

be either writtin into or read from one of the eight

(8) magnetic bubble devices.

The user has the option of entering an "R" for a read, a

"Q" tc quit or a "I" or any other character for a write. If

the user-specified operation is to read a page, the user

will be prompted for the single-digit bubble device number

(O-7H) and the three-digit page number (000-280H) of the

page to be read. The contents of the specified page will be

printed to the CRT along with the contents of the status

register. If the specified operation is to write an

eighteen (18) byte page, the user will be prompted for the

twc-digit hexadecimal value to te written in addition to the

bubble device and page number of the destination. The

t vc-digit value given by the user will then be written into

all eiqhteen (18) bytes of the specified page. If the user

types a "Q", to quit, then the program terminates and a

return is made to the CP/M operating system. No error
checks are made to verify correct entries by the user. If

61

input values are outside the specified ranges the program

will not function reliably.

C. INTEL 8086 INTERFACE COUSIDERATIONS

The actual interface and implementation of the bubble

memory system were accomplished utilizing CP/9-86 and the

iSEC 86/12A single-board computer. Several local

modifications had to be made to the standard Intel iSBC

86/12A distribution board. The following description is

provided to allow the verification of a correct board

configuration when either duplicating this thesis work or

continuing research on this system.

The address select pins for the iSBC 86/12A were

configured to place the computer's on-board RAN in the

lowest 64K byte segment. Iherefore, address select switches

one (1) and eight (8) are "on"; all cthers are "off". The

following pairs of pins were ccnnected together (juapered)

to provide the necessary interface to the locally modified

Intellec DD NDS system: .1-4, 5-6, 66-76, 79-83, 87-89,

92-93, 127-128 and 143-144. The above iSBC 86/121

modifications are necessary fcr the ccrrect operation of the

iSEC 86/12A within the Intellec DD RDS system and are not

n cessitated by MB-80 Bubbl-Bcard requirements.

62

The memory acquisition circuitry of the iSBC 86/12A will

reference RAM on the iSEC 86/121 board for addresses 0-64K

and onboard EPRON for addresses OFFCOO-OFFFFF (hexadecimal).

Any memory reference outside these two ranges will activate

the MULTIBUS acquisition circuitry. Consequently, bus

override commands, or inhibit signals, issued over the

MUTTIBUS within the first 64K byte segment will have no

affect on the iSBC 86/121's BRd. This requires that the

MEE-80's controller base be placed at an address cutside of

the first 64K bytes. Since the 880-80 co4 roller utilizes

melcry-mapped I/O to sixteen (16) consecutive memory

iccations, any 16 addresses that can be inhibited, will

suffice. It was decided to provide the user with the

ability to specify a segment base address for the ABB-80

ccntrller in all of the CP/9-86 diagnostiz (low-level

interface) programs. Since the 3EB-80 can decode 20 address

lines, the controller's base address space can oe placed

anywhere within the 1M byte address space that isn't

occupied by RAM or EPROM (which cannot be inhibited). The

address specified to these programs must correspond to the

address set on the MBB-80 address select switch.

In adlition to the EBB-80 ccntroller memory address

assignment, the interrupt stracture also has an affect on

63

LL~

the iSBC 86/12A configuration. The MBB-80 has two modes of

operation: single-page mcde and multi-pag* mode. The

single-page mode, which requires no interrupts and was

implemented successfully on the Intel 8080, also poses no

prcb.em for the Intel 8086. The multi-page mode, however,

requires that specific timing requirements be met by the

host computer in ccmmunicating with the MBB-80 ccntroller.

During transfers of data, the host must respond to the

interrupts generated by the MBB-80 every 160 microseconds

(signalling a completed transfer of one byte in a multi-byte

transfer). These interrupts can be either generated over

the MULTIBUq as "hard" interrupts to the iSBC 86/12k or the

iSEC 86/12K can "poll" (read) the status register that is

within the address space of the HEB-80 ccntrcller. a

detailed description of single-page mode, multi-page mode

and the required interrupts is given in Reference 17.

It was decided that the Intel 8086 implementation would

be accomplished in steps. First, a simple, single-page mode

prcqram would be written utilizing the algorithms that were

tested in the Intel 8080 implementation. Since the

multi-page mode provides approximately four (4) times the

effective transfer rate of single-page mode (45 Kbits/sec

versus 11 5bits/sec), it was deemed essential to utilize the

64

multi-page mode of cperaticn in the final operating system

interface. This required a decision on the method of

detecting and servicing interrupts, which led to the

development of a multi-page mode program that could C-perate

in the "polling" mode or use interrupts generated over the

HUITIBUS. To handle interrupts over the HULTIBUS, an

additional modification was made to the iSBC 86/12A board:

pins 72 and 80 were Jumpered tc allow IR1 (interrupt one) on

the BULTIBUS to be processed as interrupt type 16 within the

iSEC 86/12A micrccouputer via the on-board i8259

prcgrammable interrupt ccntrcller (PIC). It was also

necessary to connect the IRi interrupt on the NBE-80 board

itself, as described on page 2-3 of Reference 17, which

causes MBB-80 generated interrupts to be sent over the

MULTIBUS on IR1. Along with the modifications to the

Intellec DD NDS power supply and to the NBE-80 board

detailed in Section A of this chapter, a hardware

interface requirements have now been described.

D. ISTEL 8086 IMPLZMENTATIOU

The implementation of the MEB-80 Bubbl-Board with the

Intel 8086 was divided into two phases, with each phase

having specific goals. The first phase was the

implementation of a progras which uses the single-page mode

65

of operation on the MBB-80, where the basic routines

develcped in the 8080 implementation would be utilized. The

goal of this phase was to verify the successful operation of

the MEB-80 with the iSBC 86/12A hardware using the CP/H-86

operating system. The second phase involved the

implementation of a program which uses the multi-page mode

of operation utilizing either the polling mode or interrupts

generated over the MULTIBUS. The gcals of this phase were:

(1) verify that the multi-page mode of operation works; (2)

determine which interrupt method is most desirable; and, (3)

prepare and test software routines that can be utilized in

the final operating system interface.

The single-page mode program, hereafter referred to as

DIIG86S, was designed as a cocaplete Intel 8086 assembly

language diagnostic program for the MBB-80, requiring little

operator intervention (as cpposed to DIAG80.ASM -- the 8080

version). The program will continuously test every byte in

each magnetic bubble device, recording all errors, until

execution is terminated by the user. Three basic functions

were to be tested: (1) initializing the MBB-80; (2) reading

frcm the MBB-80; and, (3) writing to the MBB-80.

The algorithms developed in DIAG80 for initializing the

MBE-80 controller and fcr reading and writing a physical

66

buLtle page (18 bytes) were not logically altered. A direct

translation of these routines was made from 8080 assembly

language to 8086 assembly language.

It was considered desirable to utilize the Intel 8086ts

segmentation features to allow the future use of the full 1M

byte address space available in the processor.

Consequently, the simple "8080 memory model" was rejected in

favcr of the "compact memory model" which utilizes multiple,

user-controlled segments (see Reference 21, pages 7-9, for a

complete description of these models). Code segments (CS)

and data segments (DS) are used only for code and data

respectively, while the extra segment (ES) is used to

address the MBB-80 controller ports at a user-defined base

address (see Reference 22 for a description of IS186 and

segments).

DIAG86S was written and tested. During debugging,

routine code and logic errors were encountered but no

prcblems relevant to this specific implementation were

discovered. Execution cf this program on the iSBC 86/12A,

under the CP/M-86 operating system, achieved all of the

stated goals for this phase of the 8086 implementation. A

cosplete listing of DIAG86S.A86 is contained in Appendix B.

67

The multi-page mode program, hereafter referred to as

DIAG86M, is a diagnostic program that performs the same

functional diagnostic tests as DIAG86S. In meeting the

stated goals of this phase in the Intel 8086 implementation,

several important issues were addressed. First, the

programming of suitatle interrupt handling mechanisms to

service both MULTIBUS and pclled interrupts from the MBB-80

was necessary. Second, a method for evaluating the

desirability of these methods was needed. Finally, the

routines that performed specific bubble memory functions had

to be in a form suitable for direct application in the next

step of this thesis, the implementation of the interface to

the CP/M-86 operating system.

The two methods of handling interrupts are provided by a

conditional assembly variable in LIAG86M. The boolean

status of this variable (documented in the code) determines

whether code is generated for a MULTIBUS interrupt or for

the polled mode of operation. For the MULTIBUS interrupt

(in addition to the above mentioned hardware modifications)

three steps are required: (1) set up the interrupt vector

in CP/M-86 low memory tc handle the IR1 signal from the

ISUITIEUS; (2) program a trap handler at this interrupt

vector; and, (3) programming the i8259 PIC to recognize and

68

prcperly interpret the interrupt coming in over IRl. A

sisple semaphore, set by the trap handler and interrogated

by the bubbla routines, is utilized tc signify the

occurrence of an interrupt from the MBB-80. The use of the

polled mode merely requires the interrogaticn of the

interrupt flag register at port offset OFH in the bubble

mewcry contrcller.

Bcth the interrupt ucda and the polled mode were

successfully implemented. Execution times for complete

diaqncstic runs were 47 seccnds for both methcds (tined with

a conventional stopwatch). Due to the extra code and

hardware modifications required for vector initialization,

the decision was made to utilize the polled mode in the

CP/M-86 operating system interface. klthough this approach

limits a future applicaticn with multiple processes

requiring priority interrupts, this approach is consistent

with the polled interrupt structure utilized by disk systems

that are generated and distributed with the CP/M-86

operating system by Digital Research. It should be noted

that the code and hardware modifications for the use cf

interrupt vectors included in this chapter are completely

functional for future applications that require a

prioritized interrupt structure using the MBB-80.

69

The bubble memory initialization routine used in DIG86H

4s in the same form as that used in DIAG86S. However, the

read and write routines used in DIAG8O and DIAG86S are based

on using a physical, magnetic bubble memory, page number as

an addressable unit for each transfer. Therefore, the

foundation for the memory organization of the NBB-80 was

develcped which would be ccmpatible with that expected by a

CP/M disk structure. DIAG86M views the transfer as that of

a lcgical CP/m sector of 128 bytes. Since a physical bubble

page is 18 bytes and 128 is not an even multiple of 18, the

last sixteen bytes of each logical bubble "sector" (144

bytes) will be ignored (wasted). A logical CP/3 sector

consists of 8 bubble pages cf which the last 16 bytes on the

last page of a bubble "sector" are not used. There are 640

butble pages per device (chip), so there are 80 lcgical CP/H

sectors (as well as 80 bubble "sectors") on each bubble

device. The access of data on the Bubbl-Board ncw requires

only a device number (0-7) and a "sector" number (1-80) on

that device. A routine tc convert a "sector" number to a

starting page number of an eight page "block" was written

and tested. This routine takes intc account the fact that

the multi-page mode requires a "skew" factor of 322 on each

ccnsecutive bubble page access. This skew factor allows the

70

rapid access of pages wilhout making complete shifts of the

majcr loops in the magnetic bubble devices. mathematically,

the starting page number is computed as follows:

SPI = ((SN-1) * 12) mod 641

where SPN = star,.ng page number (0-640)
SN = EBB-8G"sector" number (1-78)
mod = modulo division (remainder)

A ccmplete description of this "skewing" operation and the

necessary programming considerations is provided on page

3-13 of Reference 17.

DIAG86H was written, tested and debugged in both the

interrupt mode and the polled mode of operation. Execution

of this program on the iSBC 86/12A, under the CP/3-86

operatinq system, achieved all of the stated goals for this

phase of the implementation. A complete program listing of

DIAG86N.A86 is found in Appendix C.

2. USE OF CP/H-86 BBB-80 CIAGNCSTIC PROGRAMS

DIAG86S.A86 is a single-page mode, 8086 assembly

language diagnostic program for the MBB-80. Its purpose was

to verify the correct operation of the MBB-80 under CP/M-86

but it can be used as a functional diagnostic program.

Since it operates in single-page mode, no supporting

interrupt structure is necessary for execution of this

prcgram.

71

This diaqnostic is invoked by executing the CIAG86S.CMD

file on the CP/M-86 system disk. The program will print

appropriate messages and then request that the user key in a

four (4) digit, segment base address for the MBB-80

contrcller. 00,U four digits can be keyed in, followed by a

carriage return. Keying in sore than or less than four

digits, or invalid hex digits (viz., not in the range O-F),

will cause the printing cf an error message and the user

will then be asked to re-enter the segment base address.

This segment base address consists of the high order 16 bits

of the 20-bit address that is physically set on the 3BB-80ts

address select pins. The address keyed in must match the

MBE-80's address and the BB-80 must be plugged into the

INTFLLZC D0 N1DS system with the power-protect switch

enabled. Selection of a base address must follow the

constraints as specified in Section C of this chapter. If

these procedures are not followed, the program will not

execute reliably (the program has no way of kncving where

the MBB-80 controller 4as been physically placed in the

address space or if it is correctly powered up).

The program will then begin the testing of every byte on

the MEB-80 board. Each device will be tested, in turn, by

writinq and then reading back a random pattern (byte) one

72

page at a time. As each device is finished, a message so

indicating will be printed. Once all devices on the board

have been tested, a summary of errors (if any) for that pass

will be listed and testing will automatically continue.

When the user wishes to discontinue testing, the keying in

of any character followed by a carriage return will

terminate testing at the coapleticn of the current pass.

Any errors encountered will be listed, indicating the bubble

device number (0-7 hex), the bubble page number (000-280

hex), the byte number within the page (0-11 hex) , the

pattern written and the pattern read back (in error) . The

occurrence of an error does not halt testing. Testing is

continuous until the user halts execution by console input.

When the program is halted, control automatically returns to

the CP/K-86 operating system.

DIAG86H.A86 is a multi-page mode, 8086 assembly

language, diagnostic program for the MBB-80. Its purpose is

to provide a production version of a diagnostic program

which runs under CP/M-86 and which can also te used to

verify the correct operation of an MB8-80 Bubbl-Board.

DIAG86M is functionally equivalent to DIAG86S.A86, except

that DIAG8O runs in multi-page mode and thus, executes

ap;roximately four times faster than DIAG86S.

73

This diagnostic is invcked by executing the DIAG86H.CHD

file on the CP/M-86 system disk. This program presents the

same messages as DIAG86S and all instructions relevant to

DIAG86S apply to DIAG86M.

There are, however, some special notes regarding the

execution of DIAG86fl. As explained in Section D of this

chapter, there are two possible versions of this program,

differentiated by a conditional assembly switch. One

version uses interrupts generated over the MULTIBUS, while

the other uses the polled mcde thich interrogates the status

of the MBB-80 controller. The "sign on" message will

indicate which version is running. Since the polled mode of

operation is used in the final CP/H-86 interface, this

version is found on the system disk. The MULTIBUS vectored

interrupt versicn requires that the hardware modifications

to the MBB-80 board's interrupt pins and the iSBC 86/12A's

interrupt pins be made (as described in Section C of this

chapter) before program execution begins.

DIAG86H.CMD is the primary tool fcr performing

diagnostic testing of MBB-80 Bubbl-Boards. It also provides

a method of performing acceptance tests of newly purchased

"BE-80 Bubbl-Boards. The user-specified base address for

the controller allows the testing of any MBB-80 that is

currently plugged into the INTELLEC DD MDS system.
74

VI. CP/U-86 INIERFACE I8PLEIEBTATION

A. BUBBLE DEVICE STORAGE ORGANIZATION

The CP/M-86 interface design consists of two parts: (1)

the implementation of the MBB-80 such that it will be

functionally eguivalent to a floppy disk generated for the

CP/M-86 operating system; and, (2) the generation cf a basic

input/output system (BIOS) for the CP/H-86 operating system

to include any combination cf disks and MBB-80 Bubtl-Boards.

This section will descri-e how the MBB-80 Pubbl-Board

logical interface is made to appear as a "standard" disk to

the CP/M-86 operating system.

CP/M-86, as does any CP/H system, uses two parameters

when communicating with disk devices: tracks and sectors.

The MBB-80 uses two different parameters: pages and devices.

The translation of the 18 byte, physical, bubble page to

that of a 128 byte CP/M sector was described in Section D of

Chapter Y. This organization configured the MBB-80 as

consisting of eight devices (0-7), each with 80 "sectors"

(1-80) of 128 bytes/sector. The remaining problem is that

o! mapping a CP/M track and sector to a corresponding BBB-80

device number and an MBB-80 "sector" number.

75

The BIOS in CP/M-86 has provisions for declaring the

number of sectors per track on a given disk, as well as the

tctal capacity of that disk (which implicitly implies the

number of tracks). It was decided that each MBB-80 "track"

would consist of 26 sectcrs, which is equivalent to the

nurber of sectors per track of a CP/M-formatted

single-density disk. This guaranteed compatible, if not

optimal, use of the built-in CP/M blocking routines which

are designed for tracks that have 26 sectors (or multiples

therecf).

Addressing each of the eight devices on the MBB-80

Bubbl-Board requires additional software in that each

individual device must be separatel addressed when

accessed. Therefore, any logical storage organization that

caused the overlapping ef logical storage units from one

physical device to the next would have required additional

software and, thus, incur a performance degradation.

Consequently, it was decided that any given MBB-80 "track"

wculd be entirely contained on cne device. Since there are

26 CP/M-86 sectors per track on a single-density disk and 80

"sectors" on an MBB-80 device, there are 3 "tracks" per

device with 2 "sectors" nct used (wasted) cn each device.

Since there are 8 devices on an NED-80 board, the total

76

capacity of the MBE-80 used would be 78K bytes on 24

"tracks" with a total of 14K bytes not used (wasted). This

firal storage organizaticn is shown in Figure 6.1.

A method for mapping to this logical organizaticn from a

CP/M-86 sector call cr track call was needed. The track

mappinq was the simplest. Mathematically, the device number

is computed as follows:

DN - TN div 3

where DN = MBB-80 device number (0-7)
TN a CP/H-86 track number requested
div = integer division (disregard remainder)

For reasons of efficiency, this translation was implemented

with tables rather than with arithmetic computations at the

assembly language level.

The sector mapping, however, presents a acre complex

prcblem. As can be seen in Figure 6.1, bubble "sector"

numbers range from 1-80 contiguously, across three "tracks",

on each MBB-80 device. CP/M-86 uses a range cf sector

numbers between 1 and 26 on eaL track for a single-density

disk. Given a requested CP/M-86 sector and track number,

the corresponding NP8-80 "sector" numbez is computed.

Mathematically, the "sector" number is computed as follows:

SN = (26 * (TN mod 3)) + SEC

where SN = MBB-80 "sector" number (1-78)
TN = CP/M-86 track number requested
mod= modulo divisicn (remainder)
SEC CP/M-86 sector number requested

77

I

I '
000 0- 00 1 0 O 0 10L cNOVO

- co N MIV

->00 00 0 0 u N 0 0 0 u n 0 ,01

r c o~fcl WC V) I
Lnn ut

1
'j

,- I *,,* * . . .

-14~

-W -W I4 -W 4J1 4J -W ' -W \1 4 \

o) a) a a

Lf) uti) n

0l. IiOI;I 0 0 0 \ ol"aU 4 00 000 000 4a 1 u
0j 0 E 0 00 0 010 r - 0 10U

. 9 e• * 9 '\' w e

> 41 414 1 4 i 41 ww,

"-1-I

MI U) f En n V

0 .4I . . .i~ .0 v

Again, for reasons of efficiency, this translation was

implemented via tables rather than computed with the

assembly language. The term "(26 * (TN mod 3))" is derived

in the table lookup at the same time that the CP/8-86 track

is being translated to a bubble device number.

Given an MBB-80 "sectcr" number (1-78), the physical,

starting bubble page number can be computed (this routine

was developed during and is explained in the Section D of

Chapter V). For convenience, the formula for computing the

physical, starting page number is repeated here:

SPN = ((SN-1) * 12) mod 641

where SPN = starting page number (0-640)
SN = MBB-80 "sector" number (1-78)
mod = modulo division (remainder)

The computation of the physical, starting page number was

implemented with arithmetic statements and repetitive

structures in the assembly language.

B. CP/B-86 BIOS CONSIDEB&TIONS

1. Structured Standards for the BIOS

The CP/H-86 operating system, as written by Digital

Research, contains three parts: the Console Command

Prccessor (CCP), the Basic Disk Operating System (EDOS) and

the user-configurable Basic I/O System (BIOS). The CCP and

BDCS portions of CP/N-86 occupy approximately 10K bytes and

are distributed as a sLngle hexadecimal code file (CPN.486).

79

.. _.....

The CCP and BDOS communicate with physical devices via a

well-defined interface in the BIOS. This interface is a set

of call and return parameter conventions for the specific

functions used when the CCP and BDOS communicate with the

BICS. The BIOS contains all device-dependent code. £

complete specificaticn of the functional operation of the

CCE and BDOS, along with the description of the BIOS

interface, is contained in the CP/f-86 System Reference

Guide (Reference 21). This section will describe the

approach used in structuring a customized BIOS which

prcvides an interface to both conventional CP/M-86

peripherals and the MBB-80 magnetic bubble device.

CP/,-86, as distributed by Digital Research, contains a

sample, skeletal BIOS which can be utilized by a user to

confiqure a customized BIOS. This skeletal BIOS is written

in 8086 assembly language. A primary goal of this

isplementation is to provide a BIOS that can be easily

modified and maintained. It was therefore considered

essential to devqlop a BICS that consisted of structured,

loically functional subroutines, within the constraints of

the CP/,-86 physical component interface requirements. It

was also considered necessary to provide adequate

documentation within the progra3 code. all subroutine input

s0

and output parameters must be clearly defined. All modules

that call a subrcutine are listed in that called

subroutine's documentation (in the code). The use of

external branches out of a subrcuzine is not ailowed and all

subroutines terminate with a single "return" (viz., no

subroutine is allowed to "fall through" to another section

of code during execution). Naming conventions for

constants, variables, labels and subroutines are consistent

and meaningful and all identifiers are located in

alphabetical crder in logically-related sections for ease of

iccation.

Although the above rules may result in some

less-than-optimal execution structures from the viewpoint of

speed, maintainability and ease of modification are

essential goals. The primary purpose of this implementation

of a BIOS, to provide a useable magnetic bubble system, can

only be fully realized in a system that will allow for the

custom modification of the implemented hardware and the

su;por-ing software.

2. Structured Approach to the BIOS

The CCP and BDOS pcrticns of CP/M-86 are designed to

interact with dtsks. Typically, an implementation of a

specific disk unit, with a microcomputer running under

81

CF/M-86, involves only 1 kind of physical disk unit.

This, cf course, results in the simplest BIOS. However, the

CCE and BDOS, in interacting with the BIOS via a standard

interface, have a logical structure which will allow almost

any combination of physical devices to be implemented in the

BICS. The only requirement is that the BIOS preserve the

standard interface to the rest of CP/M-66. It is this

structural characteristic of the CP/M-86 operating system

that was found to be very useful in this implementation.

The interface between the portions of CP/M-86 that are

relevant to this implementation concern the "logical disk"

interface. The CCP and BDOS are "aware" of up to 16 logical

disks, which CP/M-86 will address via the parameters disk

number, track and sector. It is this interface which must

be preserved by any CP/M-86 BIOS implementation.

Additionally, this BIOS lust support the combina-& of

standard floppy disk devices and SBB-80 Buttl-Boards.

Consequently, a structured approach is used within the BIOS

itself for this implementation.

The BIOS is logically divided into four different areas:

(1) standard CP/.-86 interface jump vectors; (2) subroutines

v,'ch suppo-t communication with specific devices; (3)

-,:i v ?fine the physical characteristics and

configuration of the "disks"; and, (4) subroutines which

operate (without modification) on those tables (even though

the tables may be changed).

This approach provides a table-driven BIOS. A BIOS of

this structure can be easily altered and allows for ease of

confiquration modification. Subroutinzes that provide

specific device communicaticns (viz., initializaticn, read a

sector or write a sector) must be dritten for each Ij of

d.vice supported in the BIOS (a type is a specific

dcutle-density disk, hard disk, MBB-80, etc.). Tables are

coded which describe the physical specifications of each

logical CP/M-86 disk (viz., nuater of sectors, directories,

capacity, etc.). Tables are also coded to provide the

necessary informaticn tc support the mapping of logical

CP/1-06 disk numbers to the required physical parameters for

a particular type of device (viz., aase addresses and

internal disk numbers). These tables are fully described in

S-cticn D of this chapter.

Finally, the inclusicn cf all configuration-dependent
4

infcrmation in the tables allows for ease of modification.

Provided that no new device t are generated (which would

require device-specific rcutine-) , the zonfiguraticn (number

and types of disks) can be changed entirely within the

33

tables without modifying the BIOS code itself. These tables

are "included" into the BIOS code during assembly. 1

coiplete description of the BIOS generation will also be

given in Section D of this chapter. All code in the BIOS

which requires device-dependent information to perform its

task will be designed to cperate directly on the tables.

This provides for a very modular implementation.

3. Jum Vector Interfaces

Entry to the BIOS from the CCP and BDOS is through a

Jump vector. The jump vector is a sequence of 21 three-byte

Jum instructions which transfer program contrcl to the

individual BICS entry points (subroutines). Jump vector

elements are in a standard order required by CP/M-86. Each

BICS entry pcint corresponds to a specific function, or

task, to be performed by the BIOS for the CCP and BDOS.

Each function has specific interface parameters (passed in

designated registers) which must be adhered to in any BIOS

imlementation. All of these jump vectors, the BIOS entry

points and their asscciated parameters are given on pages

56-64 of Reference 21.

Many of the functions in the BIOS need not be

implemented and are simply coded as a "return" (i.e., the

LISTOUT jump vector). Other functions deal with table "look

84

ups" within the BIOS on behalf of the CCP and BDCS. This

section will be concerned with the jump vectors that require

"knowledge" of specific physical disk devices. A complete

dascription of the CP/M-86 jump vectors is found on pages

59-61 of Reference 21.

The "INIT" jump vectcr's function is to perform all

initialization necessary for CP/H-86 that was not

accomplished in the BOCT BCH cr LCADER procedures. The

"INIT" jump vector must be modified to perform all device

initialization necessary. in this implementation, device

initialization consists cf calling a subroutine that

performs initialization for all of the BBB-80 Butbl-Boards

that are logically and pbysically part of the system.

Additionally, the default DNA address (20-bit, segment and

offset) must be converted and stored as a 16-Lit address for

all devices that require a 16-bit address (viz., the iSBC

202 disk controller).

The jump vector called "SELCSK" has the function of

selecting a disk for the next read or write. The BDOS call

parameter is a logical disk number and tha return parameter

is the disk parameter header (DEl) fcr that device. The DPH

is a standard table within CP/H-86 (BIOS) which describes

the physical attributes of each disk and will be described

85

in Section D of this chapter. These basic functions vere

nct altered. Additionally, however, upon selection of a

CF/M-86 logical disk number, it is necessary to perform

certain tasks. Given the logical disk number, a table is

used to determine the t cf device to which this disk

nuster corresponds. If the device is a floppy disk, a

mapping must be made to the physical disk number within the

flcppy disk ccntroller (0-3 on the iSBC 202 double-density

disk controller used in this implementation). If the device

is an MBB-80, the base address for the memory-mapped I/O

ccntroller must be obtained. "SELDSK" must be modified to

perfcrm these functions by subroutine calls and to store

this informaticn for later use.

The jump vector called "HOME" has the function of moving

a disk read head to !ts hcme pcsiticn (track 0). There is

2 home position for the NEe-80 Bubbl-Board. Consequently,

"HCHE" must check the device type and if it is an aBB-80,

the hcme request is trinslated into a request to set the

t:ack to zero (as required by CP/3-86).

The jump vector called "SETTRK" has the function of

setting the track for the next read or write. The track

number is passed in as a parameter. CP/M-86 supports track

numbers -'n the range 0-65536. This allows the mapping of a

86

wide range of CP/4-86 track numbers directly to physical

track numbers within disk controllers (viz.,

translation). However, the MBB-80 storage organization

requires the mapping of CP/M-86 track numbers to an KBB-80

device number and to a "sector" offset within that device.

"SETTK" must be modified to perform this function (by

subroutine call) and to store this derived information for

later use.

The "READ" and "WEITE" jump vectors have the function of

performing a sector read (cr write) tc (from) the specified

disk number at the specified track and sector. Normally,

these vectors perform the actual operation directly by

passinq a channel command word to the disk ccntrcller for a

single device. However, the NBE-80 requires entirely

different routines tc perfcrm a read or write operation.

Therefore, "READ" and "WBITZU must determine what J= of

device is currently being utilized and then call appropriate

subroutines to perform MEB-8C reads and writes. The

routines that actually perform the zon-standard device

(viz., EBB-80) read and mrite operations must also perform

all necessary low-level mappings. In this implementation,

&he MBB-80 read and write subroutines will call on a sector

translation subroutine that will map CP/M-86 sector numbers

tc MEE-80 "sectcr" numbers.
87

It should be noted that all device-specific details have

been excluded from the jump vectors and coded within the

device-specific subrcutines. Jump vectors merely determine

what lyp1 of device is being used (via tables) and then call

appropriate subroutines. Although this BIOS implementation

is specifically for the iSBC 202 disk controller and the

MSE-80 Bubbl-Board (as the two t of logical disks), it

can be easily modified to include AM other type of disk

device or maqnetic bubble system as well. Operations that

are dependent on a specific device type are isclated in

specific subroutines. As described above, maintainability

and ease of configuration modification have been designed

into the structure of this BIOS implementation for CP/5-86.

C. USE OF THE CP/B-86 5B-80 FCIUAT EROGRAI

S28OFMT.A86 is a multi-page mode, 8086 assembly language

program which formats the EBB-80 Bubbl-Board to meet IBM

compatibility standards. This format is the required format

fcr "new" CP/15-86 lisks and consists of the hex pattern "25"

in every data byte of the disk. The program uses the

multi-page polled mode tc write the pattern to the BB-80.

This format program is invoked by executing the

SBeoFBT.CMD file on the CP/1-86 system disk. The program

will print appropriate messages and then request that the

88

user key in a fogr-digit, segment base address for the

HBE-80 controller. Qnl four digits should be keyed in,

followed by a carriage return. Keying in more or less than

four digits, or invalid hex digits (viz., . in the range

O-1), will cause the printing of an error message and the

user will then be asked to re-enter the segment base

address. This segment base address consists of the high

order 16 bits of the 20-bit address that is physically set

on the MBB-80s address select pins. The address keyed in

must uatch the MBB-80 ccntroller's segment base address and

the MBB-80 must be plugged into the INTELLEC DD RDS system

with the power-protect switch enabled. Selection of a base

address must follow the constraints as specified in Section

C cf Chapter V. If these procedures are not followed, the

prcqram will not execute reliably (the program has no way of

kncwinq where the 3BB-80 contrciler has been physically

placed in the memory address space or if it is correctly

povered up).

The program will then begin writing the hex pattern to

every byte on the MBB-80 board. So further operator action

is required. Bach device (0-7) will be written to and, as

each device is formatted, a message so indicating will be

printed. Upon program completion, the "formatting complete"

89

message will be printed and control will return to the

CP/M-86 operating system.

Since the polled mode is used to implement the

multi-page mcde of operation, there are no special

considerations for running this program. The user-specified

base address for the contrcller allows the formatting of any

MBE-80 Bubbl-Board that is currently plugged into the

INTELLEC DD MDS system. ME8OPfMT.CND provides the only means

of preparing an MBB-80 Subbl-Board for use as a "disk"

within the CP/. -86 operating system.

D. CP/E-86 BIOS INPLENENTATIOU

1. !od4fication of the Existing BIOS

The host CP/.M-86 system, as described in Reference

18, contains a customized BIOS supporting a single iSBC 202

disk controller. This host BIOS is used to generate the

LCADES BIOS as implemen.ed in both the host system's BOOT

ROM and LOADER program. 1he hcst BOOT RON requires that a

physical iSBC 202 disk be present in drive number 0 for boot

loading (tracks 0 and I). However, nc restrictions exist as

to the actual disk configuraticn that can be initialized and

run by CPM.SYS (in its BIOS), which is read into RAN by the

Lcader program.

30

-! ~ ~~~~~~ ~ ~~~~~"'. i-;
- - . '

.. . -..... ..

The basic routines for console input and output

contained in the BIOS of Reference 18 were considered

acceptable for use in this implementation. All other jump

vectors either required modifications as described in the

preceding section or were .fLt considered to be consistent

with the structured standards of this implementation.

Consequently, all of the jump vectors were re-coded.

The device-dependent routines supporting the iSBC 202,

fcund in Reference 18, were also incompatible with the

structured standards and goals of this implementation.

There was much redundancy and inefficiency in the algorithms

and in the implementation as reflected in the code. In

addition, the indexing method for mapping error codes to

error messages for the iSBC 202 was found to be incorrect.

Therefore, all routines relating to the iSBC 202 were

re-written to perform correctly and to coincide with the

standards and structured approach of this implementat.,%n.

Obviously, the single iSBC 202 controller implementation of

Reference 18 was limited to a single disk device. The

implementation presented here is based on a tatle-driven

BICS that directly supports up to sixteen (the CP/H-86

maximum) disk drives which can be cf two different types of

devices. This necessitated the development of an entirely

91

new BIOS structure which resembles the BIOS cf Reference 18

and the CP/i-86 distributicn BIOS only in its preservation

of the required jump vector interface standards.

2. Disk Parameter Table

The tables which determine the physical disk device

characteristics of this CP/M-86 BIOS implementation are

ccrtained in two separate files. One file contains the

specific device characteristics of each device, while the

other file detqrmines the currently generated configuration

of disk devices.

The family of standard CP/M operating systems is

designed to accept a table-driven specification for the

physical characteristics of each logical CP/M disk device.

These tables are called "disk definition tables" and consist

of a disk parameter table fcr each disk generated as well as

the scratchpad work areas for the operating system. The

user is able to specify the number cf logical disks to be

generated (0-16), along with the characteristics of each

disk (each having a separate entry). These characteristics

include: the logical disk number, first and last sector

number on each track, o~ticnal skew factor, blocksize, disk

capacity, the number of directory entries, checked entries

and the number of tracks to rese:ve for the operating

92

system. These parameters are specified in a file.

Ncrmally, the same type of device has the same parameters in

every occurrence of that device type in the file. The only

parameter that changes for devices of the same type is the

icqical disk number.

This file, containing the disk parameters, is used as

input to a CP/M-86 utility program called GENDEF. This

utility takes as input a file called filename.DEF and

prcduces an 8086 assembly language source code file called

filename.LIB. This output file contains the generated

buffers, tables and scratch work areas needed by CP/H-86 to

ccomunicate with each disk device. A complete description

of this disk parameter table generation and specification

prccedure is included on pages 65-73 cf Reference 21.

The file generated by the GENDEF program is used in an

ASE86 "include" statement (viz., inserted intc the BIOS

code) to be assembled within the BIOS. The disk parameter

definitions (to be input to GENDEP) used for this

piulementa.ion are included in the file DKPBM.DEF. This

definition allows for three "disks": two iSBC 202 floppy

dsks and one MBB-80 "disk." If mcre or less disks are

required, this disk parameter table must be changed and a

new BIOS generated as described in a following section.

93

The disk definition parameters used in the BIOS of

Reference 18 for the iSBC 202 controller were used in this

implementation. The disk definition parameters used in this

implementation for the MBB-80 were derived from the magnetic

bubble storage organization scheme. First and last sector

numbers were defined as 1 and 26, respectively. No skew

translation was specified in that the BICS IBB-80

sector/track translation routines provide for this function.

A blocksize of 1024 was defined so as to resemble a

single-density disk. The capacity is 71K bytes as

determined by the physical storage scheme and accounting for

reserved operating system tracks. Space was reserved for 32

directory entries, which allocates the minimum space

possible for the ABB-80 directory. A checked entry of zero

(0) is absolue.- necessary to indicate that the MEB-80 is a

non-removable media. Any directory checking will result in

read-only status settings for the SBE-80 since CRC check-sum

bytes are nct provided for by the MBB-80 ccntroller.

Finally, two "tracks" are reserved ior the operating system.

This will aid in the implementation of an MEB-80 LOADER on

track 0 and track 1.

94

3. Disk Configuration Tablas

The DKPRM.DEF file contains information about the

physical characteristics of each logical device. Since more

than one possible device typ may be generated in this

implementation, it is necessary to map the CP/M-86 logical

device numbers and their associated physical characteristics

tc the actual physical devices they represent. A set of

tables has been developed to accomplish this task and is

contained in the file called CONFIG.DEF. This file is also

an 8086 assembly language zcurce code file which is included

into the BIOS during assembly. The configuration file is

entirely a product of this implementation and has no

relation :o Digital Research's CP/M-86 distribution BIOS

code. A summary description of the CONFIG.DEF file entries

4s contained in the CONFIG.DEF file itself. A complete

discussion of the tables will be presented here.

The first entry in the configuration file Is the number

of logical disks defined. The identifier name in the file

A is "numloq disk" and this entry is an equate statement.

The value of this label can be in the range 0-16 decimal but

must correspond to the "DISKS" statement in the DKPRf.DEF

file.

95

A-AIlS 028 NAVAL POSTRADUATE SCHOOL MONTEREY CA F/S 9/2
ADAPTATION OF NAGNETIC BUBBLE MEMORY IN A STANDARD MICROCONPlJTE--ETC(Uf
DEC 81 U S HICKLIN, J A NKEELOD

UNCLASSIFIED NL"

3 EEllE~lEEEEE
EE Lh~~hEEEEEEEIII/EEEE

///EEE-E///EEI
IEEIIEIIIIIIIE

1"5 112.8 i12.5111 .1

jjjj I. ' I6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

The next entry is the device table. The identifier name

in the file is "device-table" and this table is a 0-16 byte,

one-byte per entry, table. This table describes the l of

each disk device in logical order from CP/M-86 disk number

zero (0) to the highest CP/M-86 disk number generated (which

is "numlog_disks" minus 1). A byte position, or

displacement, in the table corresponds to the logical

CPF/M-86 disk number (viz., byte offset 2 is the device type

entry for CP/M-86 disk number 2, if generated). Each

loqical CP/M-86 disk that is defined must have an entry in

this table indicating its device type. Therefore, the size

of this table, in bytes, will equal the number of CP/M-86

disks defined. The different device types supported in this

implementation each have a unique, hexadeciaal, byte value

to identify them. These codes are defined in equate

statements at the beginning of the BIOS. The user will make

entries into this table using the equate constants

"disktype"l and "mbb80_type", with each successive entry

separated by a comma.

Ii cllowing the device table is the disk logical table for

the iSBC 202 disk ccntrcller. The identifier name in the

file is "DK~logicaltable" and this table is a 0-16 byte,

one-byte per entry, table. This table maps logical CP/M-86

96

disk numbers (0-15 possible) to internal iSBC 202 disk

controller numbers. A single iSBC 202 contrcller can

address up to four disks (internally numbered 0-3). A

specific BIOS configuration may assign the four iSBC 202

disks to any four CP/M-86 disk numbers in the range 0-15.

These CP/M-86 disk numbers must be mapped to iSBC 202 disk

ccntrcller numbers (0-3) to be used in the disk channel

command words. Therefore, this table maps logical CP/H-86

disk numbers to iSBC 202 disks (up to to a maximum of four,

since this implementation is designed for a sigle iSC 202

ccntroller). The size of this table, in bytes, can be up to

16 bytes, with the offset in the table corresponding to an

entry for that CP/M-86 logical disk number. It is important

tc note that an entry must exist for all positions in the

tatle up to and including the offset for the last CP/M-86

disk generated as an iSEC 202 disk device. The value

"EX-null", which is merely a "place holder", is used for all

entries which do not correspond to iSBC 202 disk devices.

For example, if two iSBC 202 disks were generated as

A logical CP/%-86 disk numbers 0 and 4, then the table would

.- be five bytes long. Byte offsets 0 and 4 would contain OOH

and 01H (as internal disk numbers) respectively, while byte

offsets 1-3 would contain the "DK-null" place holding entry.

937

21

Byte offsets greater than 4, the last iSBC 202 disk

qenerated in this example CP/m-86, need not be defined

(ccded).

The last entry in the file is the BBB-80 logical table

fcr the 1BB-80 controller(s). The identifier name in the

file is "MB-logical-table" and this table is a 0-16 word,

one-word Per entry, table. This table maps logical CP/9-86

disk numbers (0-15 possible) to MBB-80 controller segment

base addresses. Any number of SBB-80 "disks" may be

generated anywhere (non-sequentially and non-contiguously)

in the logical CP/M-86 disk range of 0-15. The size of this

table, in words, must be .xactly equal to the number of

disks defined ("'num logdisks,) . The word offset in the

table corresponds to an entry (ccntroller segment base

address) for that CP/H-86 MBB-80 "disk." It is important to

note that an entry must exist for all positions in the

table. The value "MB-null", which is merely a "place

hclder", is used for all Entries which do not correspond to

an MBB-80 "disk" device. This table is also used to

, initialize the MBB-80 controlle.r(s) based on the total

number of CP/M-86 disks defined. The table is "walked

through", with null entries being ignored and with non-null

controller segment base addresses being initialized.

98

Therefore, unlike the disk logical table, there must be one

entry for every logical CP/H-86 disk defined.

For example, if five CP/5-86 disks were generated, with

numbers 0, 1 and 3 being iSBC 202 disks and numbers 2 and 4

being MBB-80 "disks", this table vculd be five words in

lergth. Word offsets 2 and 4 would contain valid BBB-80

ccntrcller segment base addresses (in hex), while word

offsets 0, 1 and 3 would ccntain the "MB.null" place holding

entry. It is also important to note that when boc loading

a CE/M-86 operating system with MBB-80 boards generated as

disks, it is imperative that all MBB-80 boards be plugged

into the INTELLEC NDS chassis and powered up. Failure to do

so will cause the BIOS initialization routine to "hang" when

prccessing the valid controller segment base addresses for j

NBE-80's in this table.

4I. BIOS Generation Procedure

The procedure for the generation of a

user-configured BIOS and a new CP/M-86 operating system is

described on pags 80-82 cf Reference 21. A synopsis of

that procedure, along with the necessary modifications for

this implementation, will be presented here.

The two files, DKPRM.DEF and CONIG.DEF, are updated, as

specified above, to reflect the user's desired devices and

99

confiqurations. The CP/H-86 GENDEP utility program is run

utilizing DKPRN.DEP as input and producing DKPR.LIB as

output.

Assuming all necessary device-dependent modifications

are made to the BIOS, assembly of the BIOS can take place.

X2 modifications are necessary to this implementation BIOS

if only iSBC 202 disks and NBB-80 "disks", in some

combination, are to be used. This implementation's BIOS is

included in the file called MBBIOS.A86 and is listed in

Appendix E. In the code file MBBIOS.A86, there are the

appropriate ISM86 "include statements" for the files

DKPRB.LIB and CONPIG.DEF which will cause them to be

inserted into MBBrOS.A86 during assembly. It was found that

the 8086 cross assembler, a CP/M-80 program, has a small

symbol table capacity. Therefore, assembly of 3BBIOS.A86

must take place under CP/H-86.

Upon successful assembly, the file MBBIOS.H86 is

prcduced. This file is concatenated tc the CP/M-86

distribution CCP and BDOS, contained in the file CPH.H86,

usinq the CP/M-86 utility proqram called PIP.CMD. The name

of the :-esulting combined file should be a dummy, temporary

name such as NECP.H86. The resulting CCP, BDOS and

customized BIOS hex file is then converted to the CHD file

100

fctmat by executing the CP/3-86 utility program called

GZNCBL.CMD. The GENCHD options of an 8080 memory model and

an absolute code location of "&40" must be specified. The

format of the command with the options follows:

GENCHD NEUCPM 8080 ccde[&40]

Finally, the NEVCPH.CHD file is transferred to a new system

disk that contains a LCADEB program (see Chapter VII) and

renamed to CPH.SYS. Now the tailoring process is complete

and a boot load to the new system disk will invoke the

CP/M-86 that has been generated.

5. Reconfigurina the BIOS

This implementation has been designed to directly

suiport a single iSBC 202 disk ccntroller and multiple

NBE-80 boards in the BIOS. This allows for up to four (4)

floppy disks and up to "n" (where 'n" equals sixteen minus

the number of !SBC 202 disks generated) SBB-80 disks.

The number and types of iSBC 202 and MBB-80 disks can be

altered via the device and configuration tables. No changes

are necessary to this implementation's BIOS code

(MEBIOS.A86). Following the procedures of Section D.4 of

this chapter will generate a new configuration in accordance

with the information contained in the tables. Therefore,

this BIOS can be easily expanded to support additional

101

NBE-80 "disks" and two sore iSBC 202 drives (since the iSBC

202 controller is currently controlling only two physical

drives).

This implementation has been generated with three (3)

logical CP/M-86 disks. CP/N-86 disk numbers 0 (drive A:)

and 2 (drive C:) map to the iSBC 202 controller's internal

disk numbers 0 and 1. CP/M-86 disk number 1 (drive B:) saps

to an MBB-80 Bubbl-Board controller at a segment base

address of 0800H. & segment base address of C8000H was

chosen for two reasons: (1) CP/M-86 I/O reserved addresses

in the first 64K segment cculd not be used because of the

inability to inhibit the onboard RAN for memcry-mapped I/O,

and (2) 080000H is significantly out of the address range

for most applications. This address can be changed by

mcdifying the entry in the CCOFIG.DEF file for the MBB-80

ccntroller segment base address.

1. EVALUATION OF THE IBPLBUEITATION

1. krrn

The primary criteria fcr the performance evaluation

of this implementation was the speed of execution of the

input/output functions of the types of disk devices. Three

different programs were run on both an BBB-80 "disk" and on

an iSBC 202 disk to determine execution times. A

102

conventional stopwatch was used for the timing and the

results of those tests are summarized below.

The first test consisted of executing the CP/M-86

utility program, called EIP.CHD, which transfers CP/3-86

files between disks. The PIP program and target files of

2K, 6K and 28K bytes were loaded to both an MBB-80 "disk"

and an iSBC 202 disk. Transfer operations were performed on

each file on each device utilizing sane-device resident

copies of PIP, the target file and the destination file.

The results of the test utilizing the PIP program were as

follows:

Pile Size (Bytes) MBB-80 (Seconds) iSBC 202 (Seconds)

2K 3.5 11.2
6K 6.1 11.3
28K 18.2 21.2

The second test consisted of executing the CP/M-86

utility program, called ED.CMD, which is an object-oriented

editor for files. The ED program and target files of 2K, 6K

and 24K bytes were loaded to both an MBB-80 "disk" and an

iSBC 202 disk. Edit operations were performed on each file

on each device using same-device resident copies of ED, the

target file and the destination file. The events timed and

tested for an edit operation were the reading of the ED

prcgram into memory and the writing of the target file back

103

to its source disk from PAB memory. The results of the

editing test were as follows:

File Size (Bytes) IBB-80 (Seconds) iSBC 202 (Seconds)

Write L Wi
2K 2.6 1.5 8 A 5.3
6K 3.3 3.1 8.5 6.4
24K 3.4 10.4 8.7 13.9

The last test consisted of executing the CP/M-86 utility

prcqram, called ASM86.CBE, which assembles 8086 assembly

language files into 8086 hex files. The 1S86 program and

target files of 4K, 8K and 14K bytes were loaded to both an

NBE-80 "disk" and an iSBC 202 disk. Assembly operations

were performed on each file cn each device utilizing

sane-device resident copies of ASM86, the target file and

all of the ASH86 output files. The results of the assembly

test were as follows:

file Size (Bytes) MBS-80 fSeconds) iSBC 202 (Seconds)

4K 20.9 28.4
8K 45.0 53.7

14K 64.3 81.9

From these test results it can be computed that an

MPE-80 "disk" will prcvide an average increase of

aproximately 42 percent in iLput/output over an iSBC 202

disk. Of course, the more I/O intensive a program is, the

greater the performance advantage that can be realized when

usirg an MBB-80 vice an iSEC 202 disk.

104

2. Liitations

Three primary limitations were discovered in this

implementation: transportability, density and transfer

rate. A certain measure cf transportability is provided in

that any single MBB-80 Bubbl-Board is a logically complete

CP/M-86 disk. The board caM be removed from the INTELLEC DD

MDS system chassis and moved tc another system that supports

MBE-80 devices under CP/M-86. However, this does require

the "powering down" of the chassis prior to removing the

board. It is also recognized that the media of a

solid-state circuit board is different from that of a

flexible, thin, magnetic disk. It is not clear which media

I4s more conducive to transportability in any given

application and environment.

The second limitation involves the relatively small

capacity of the MBB-80 "disk" (78K bytes) in comparison to a

sinqle-density or double-density floppy disk (250K or 500K

bytes). Even if the full capacity of the MBB-80 (92K bytes)

could be used, the capacity difference is significant. The

I litited capacity of the MBE-80 restricts the number and size

of the applications which can be executed e with the

NBE-80 storage device. This limitation made large

assemblies on MBB-80's and MBE-80 CP/M-86 resident disks

impractical for a useful iaplementaticn.

105

The third limitation, transfer rate, becomes evident in

viewing the test results presented in the performance

section. As the size of the file is increased, the MBB-80's

advantage over the iSBC 202 on I/O operations becomes less

noticeable. This is primarily due to the fact that the

MBU-80's transfer rate is only 45 Kbits/second, compared to

a transfer rate of 250 Kbits/second for the iSBC 202. When

I/C is performed where the number of seeks is relatively

small in comparison to the number of actual bits

transferred, the MBB-80's advantage is diminished. The

validity of this trend could not be verified by the testing

of large files because of the capacity limitation cited

above.

It should be noted that, upon the availability of

multiple &BB-80 boards, a system can be easily generated to

support many MBB-80 "disks." Then, large applications could

be run exclusively on MBB-80 "disks" by utilizing target

disk specification parameters that are available in most

CP/M-86 utility programs. Additionally, the future

generation of a BIOS utiliz!rg the currently available,

high-capacity (IM byte) magnetic bubble devices is not to be

precluded. This implementation of a BIOS provides an

excellent and easily adapted framework for the addition of

new types of disk devices.

106

3. Apmlicati

This implementation of an 8BE-80 Subbl-Board within

the CP/M-86 operating system has prcduced a workable host

micrccomputer environment which can be used for research and

evaluation of magnetic bubble memory technology. It has

alsc produced, with the subsequent addition of more MBB-80

boards, a developmental system which offers significant

performance (speed of I/O) improvements over standard floppy

disks in certain applicaticns.

There is much theoretical research on the applicability

of magnetic devices. The literature contains many untested

and unimplemented designs, algorithms and programs for

applications ranging from "fast sorts" to database

management schemes. This implementation provides a host

system capable of supporting research and experimentation in

these areas on a fully-operaticnal microcomputer system that

supports magnetic bubble devices.

This implementation has produced a system capable of

supporting up to sixteen SBB-80 "disks." Despite the

individual capacity limit of 78K bytes per MBB-80, it is

obvious that a significant reducticn in program development

time could be achieved utilizing exclusively MBB-80 logical

"Aisks." This system is built upon the highly-regarded

107

Intel 8086, 16-bit microprocessor running under the CP/0-86

operating system. These characteristics, combined with the

deucnstrated performance cf the MBB-80, contribute to

prcvide a robust host system for research and application

prcgram development utilizing magnetic bubble devices.

i

108

VII. DOOTLOADING CP/N-86 FC THE aBB-80

A. BOOT ROB AND LOADER COUSIDEBATIONS

Vhen installed in the iSBC 86/12A, the BOOT BOB is part

of the memory address space, beginning at byte location

OFIOOOH, and receives control when the system reset button

is depressed. The BOOT SOB on the standard iSBC 86/12A

cortains the 957 monitor program as supplied by Intel. The

prcgram implemented on the EERCH chips was modified by

adding code tc the end of the 957 monitor prcgram in memory

addresses that were not utilized in the implementation of

Reference 18. This customized addition of code to the 957

mcnitcr program begins at memory address OFFD4OH and has the

responsibility of reading the LOADER program from the first

twc system tracks of the CP/M-86 default disk drive into

memory and then passing ccntrol tc the LOADER program for

execution.

The BOOT SON is actually an EPROM which can be modified

fcr srecific implementations. The host development system,

as described in Reference 18, reads the LOADER program from

tracks 0 and 1 on physical drive number 0 of the iSBC 202

ccntrcller. The additional BOCT BOB code contains the

necessary routines for initializing the iSBC 202 controller

109

and fer reading the LOADER program from disk into memory.

This procedure is initiated by issuing a "GFFD4:O" command

to the 957 monitor, which passes control to the beginning of

the bcotstrap code in the BCOT BOB.

It was considered desirable to be able to boct load the

CP/H-86 operating system from either an iSBC 202 disk or

frcw an MBB-80 logical "disk." This requires two entry

points into the additional code in the BOOT RO. These

entry points will set a flag indicating whether an iSBC 202

disk or the MBB-80 is to be used as the boot loading device.

Additionally, routines for initializing the EBB-80 and for

reading track 0 and track 1 on the KBB-80 had to be included

in the BOOT RON.

The available space in the BOOT RON address space is

severely limited. Therefcre, the code for common functions

in the BOOT RON must be used by both an iSBC 202 boot

request and an BBB-80 boot request when boot loading. Then,

based on the value of the entry point flag, the requested

device type (viz., iSBC 202 or 3BB-80) initialization and

read routines will be utilized to read into RAM the LOADER

prcgram from tracks 0 and 1 of the boot device. A common

section of code will be used to pass control to the LOADER

prcqram for execution. A primary consideration j= be

110

restricting the size of this additional code to the unused

space after the 957 monitor program in the iSBC 86/12A's

ontcard EPROff.

The LOADER program is a simple subset of the CP/H-86

operating system that contains sufficient file processing

capability to read CPH.SYS into memory from a system disk.

When the LOADER program completes its operation, the CPH.SYS

prcgrau receives control and proceeds to process operator

input commands. The LOADER program consists of a loader CPM

and a loader BDOS (distributed by Digital Research) along

with a user-configured loader BIOS. The file resulting from

the concatenation of these three modules is converted to an

executable CfD file and placed on tracks 0 and I of the

system disk. [Ref. 21: pp. 77-79]

A user-configured loader BIOS can be generated from the

BIOS code developed in this implementation. The complete

flexibility of device configuration that is possible in a

standard BIOS is also possible in a loader BIOS. This

implies an important consideration: the LOADER prcgram does

not have to read CPM.SYS from the same device that the

LCADER program Itself was read from. The LOADER program

will read CPN.SYS from the default disk number and its

corresponding device type based upon the device

111-

configurations and mappings specified in the Icader BIOS.

Issuing a monitor "GO" command for the entry point of the

iSEC 202 in the BOOT ROM " alwa result in the contents

of tracks 0 and 1 (the LOADER program) on physical iSBC 202

drive number 0 being read into RAN. Likewise, issuing a

monitor "GO" command for the entry point of the MBB-80 in

the BOOT ROM wil always result in the contents of "tracks"

0 and 1 of the MBB-80 at a controller segment base address

of 08000H being read into RAN. The actual device

confiquration contained in the loader BIOS is not restricted

by the type of device used by the BOOT RO when reading the

LCIDEB program.

B. BOOT ROB AND LOADER IRPLERISTATION

The additional code for the BOCT ROM was written and

tested. It provided for a ccnditional boot load from an

iSEC 202 or from an MBB-80 at a ccntroller segment base

address of 08000H. The entry points are OPFD40OH for the

iSBC 202 and OFFD44H for the MBB-80. Upon depressing the

reset button, the 957 uonitcr program begins execution. To

boct load from the iSBC 202 the mcnitcr command "GFFD4:0" is

given, which is the same ccamand as that used in the

!uFlementation of Reference 18. To boot load from the

:BE-80, the mcnitor ccmmand -GFED4:0004" is given.

112

The additional code for the BOOT RON contains the entry

pcints for the two device types, the iSBC 86/12A

initialization procedures and the code necessary to

initialize the selected toot device and read the LOADER

prcqram from the system tracks of that device. The

additional code for the BCCT RON is contained in the file

called MB80RO5.A86. This file is assembled and the

resulting object code is added to the 957 monitor program on

the iSBC 86/12A's onboard EPROM. This prccedure is

described in Section C of this chapter.

The LOADER program itself ccnsists of three parts: the

Lcad CP3 program (IDCPM.H86), the Loader Basic Disk

Operating System (LDEDOS.H86) and the Loader Basic I/O

System (LDBIOS.H86). The files LDCPH.H86 and LDBDCS.H86 are

included as part of the standard Digital Research

distribution system for CP/M-86. The lcader BIOS is

generated from the file MEBIOS.A86, which is also used to

generate the standard CP/M-86 BIOS for this implementation.

MEPIOS.A86 contains a conditional assembly switch, called

* "lcaderbios", which, when enabled, produces a lcader BIOS.

The effect of this switch is tc modify certain addresses to

correspond to entry points into LDCPM and LDBCCS and to

ellminate BIOS code that is not needed in the loader version

of a BIOS.

113

The loader BIOS is configured in exactly the same manner

as the 310S itself and is fully described in Section D.4 of

Chapter VI. The two files CONFIG.DEF and DKPRN.DEF must be

modified to meet the user s requirements and to reflect the

device that will contain CPH.SYS. It is the default drive,

4or CP/H-86 drive number 0, that is specified in the device

tatle that determines which device will be searched for a

CPH.S!S file.

The loader BIOS generation procedure is different from

the BIOS generation procedure. Upon modification of the DEF

files and successful assembly of MBBIOS.A86, a file called

MEEIOS.H86 is produced. This file is concatenated to

LDCPM.H86 and LDBDOS.H86 using the CR/3-86 utility program

called PIP.CMD. The resulting combined file should be named

LDEIOS.H86. The resulting lcader CCP, BDOS and BIOS hex

file is then ccnverted to the CMD file format by executing

the CP/M-86 utility program called GESCAD.CMD. The GENCND

cpticns of an 8080 memory model and an absolute code

iccation of @1400" must be specified. The format of this

* I command is as follows:

GENCHD LDBIOS 8080 CODE(A400]

Finally, the new loader BIOS must be copied to tracks 0 and

1 cf the new system disk. This is done by executing the

11S4

CP/M-86 utility program called LDCOPY.CMD. Assuming the

loader BIOS executable file was called LDBIOS.CND, the

fcllowinq comand would be used to initiate this prccess:

LDCOPY LDBIOS

The LDCOPY program will ask for a destination drive to

receive the LDBIOS program on its t.ack 0 and track 1. The

target drive should have a scratch floppy disk (if an iSBC

202) or an SBB-80 board. A complete descripticn of the

LDCCPY procedure is given on pages 77-79 of Reference 21.

C. EPRON GENIRATION

With the boot load program, ME80011, written, the only

remaining task was the generaticn, cr programming, of the

required EPRCS chips. The iSBC 86/12k has 8K bytes of

ontcard addressable !PROM, prcvided in four Intel 2716 EPROa

chips of 2K bytes each. Because of the odd-even addressing

of the iSBC 86/12k, two of the 2716s are devoted to the 4K

even address bytes and the other two are devoted to the 4K

odd address bytes. These even and cdd addzess EPROfs are

located at starting addresses OFEO00H and OFEO01H,

respectively.

As previously mentioned, the 957 monitor program of the

INELLEC DD NDS system occupies a large porticn of this

ontoard EPROM address space. The monitor occupies the

11

address space between OF O005 and OFPD22H and also has jump

vectcrs located between O 0FFEOH and OFFFFFH. The address

space available for boot loader programs is approximately

720 (decimal) bytes between the end of the monitor and the

jump vectors. Since this available space is located

entirely in the upper 4K bytes of the onboard EEBOM, only

the two 2716 EPROM chips containing the upper 4K bytes of

address space need to be modified when incorporating a boot

Icader.

Utilizing the CP/5-86 utility program called DDT.CHD,

the contents of th' uppvr 4K bytes of the iSBC 86/12A's

ontcard EPROM wa TraA into memory and then saved as an

executable CHD file. The INTELLEC DD NDS system was then

reconfigured to the standard Intel 8080 sytem to facilitate

the use of the ISIS operating system and the Universal Pros

Prcgrammer. The CP/M-80 utility program called DCT.CO was

then utilized to replace the the existing boot loader

porticn of the saved copy cf the EPSON contents with a copy

of MB80ROM .CHD. This resulted in a single, complete,

contiquous copy of the desired EPSON contents.

Intel 8080 assembly larguage programs were then written

to split a file into contiguous blocks of odd address and

even address bytes. Usinq the CP/M-80 DDT program, the file

116

ccntaininq the new EFiOM contents was loaded into memory and

then each of the splitting programs loaded and executed.

This resulted in the desired EPROM contents being divided

into two contiguous blocks of 2K bytes each, one block

containing the even address bytes of the split file and the

otber containing the odd address bytes of the file, and

stcred in RAN. The ISIS operating system was then booted

with the two split blocks ¢f the new EPROM contents still

stcred in RAM. The ISIS Universal FROM Mapper (UPM) system

was then used to program two intel 2716 EPROM chips, one

with the 2K byte contiguous blcck of odd address bytes and

the second with the 2K bytes of even address bytes

previously stored in RAN. The contents of the two newly

programmed 2716 chips was then verified using the facilities

of the UPH system.

The new EPROR chips, now containing AB8ORCS.CHD in place

of the boot loader provided by Reference 18, were then

placed on the iSBC 86/12A and operationally tested. Boot

lcading from both an iSBC 202 disk and an 1B3-80 "disk" was

successfully accomplished. To ensure compatibility with the

previous implementation of Reference 18, the CP/8-86

operating system of that implementation was successfully

bcct loaded with the new EEROM chips.

117

A. INPLENENTATION SYNOPSIS

All of the stated goals of this thesis were successfully

accomplished in this implementation. A magnetic bubble

device (MBB-80) was implemented utilizing a conventional

micrccomputer operating system (CP/M-86) and a commercial

16-Lit microprocessor (Intel 8086). A fully cperational

system capable of testing, evaluating and utilizing a

maqnetic bubble device in a standard user environment was

presented.

This implementation was accomplished in a manner such

that future modifications and additicns of hardware will be

relatively easy. The hardware-dependent Basic I/O System

(BIOS) of the CP/M-86 operating system was developed and

coded as a structured, modularized, table-driven module.t Device-dependent routines were isolated and confined to

specific subroutines and tables. Device-independent code

was structured to operate, without modification, utilizing

the tables and subroutines which describe the specific

hardware of the system. Documentation and structured

programming techniques were emphasized to provide ease of

prcqram maintenance and modification.

118

This iupleepntation provided a system in which the

NBE-80 magnetic bfubble device has the functionAl appearance

of a disk to the!CP/.-86 operating system. Consequently, at

the user-inter ace level, nc special considerations are

Inecessary to! utilize the magnetic bubble devices.

Additionally, /a system was generated consisting entirely of

magnetic bubb/e devices. The system BOOT BOB and LOADER

prcgram were/modified to show the feasibility of kooting the

CP/3-86 op rating system from a magnetic bubble device.

This produ ed a fully operational system supported only by

magnetic bubble secondary storage (viz., &2 floppy disks).

This .implementation and the prcven feasibility of a

system using magnetic bubble devices suggest many possible

applications for this type of system. An operational system

is now available for further- testing and evaluation of

magneti bubble devices. The MBB-80, as a logical disk
device enerated into a CP/H-86 environment, becomes a

compati le medium fcr different host systems (viz., hard

disk, ouble-density, single-density). BB-80 boards can be

. moved/ to any CP/3-86 ,ULTIBUS system, which has been

gene/ated with IBB-80 devices, and used to transfer files to

the/host system media.

I

,!11

B. B!CONMENDATIONS FOR FUTURE VOK

There are four major areas that present opportunities

for future work. These areas are: (1) storage mapping

schemes; (2) MBB-80 performance measurements; (3) generating

and testing of new magnetic bubble devices; and, (4)

ifflementation of new and existing applications utilizing

MBE-80 devices.

The storage mapping scheme for the MBB-80, as

implemented in this thesis, is both simple and efficient

(viz., speed of code execution) but wastes 15.2 percent of

the tctal capacity of the BEB-80 Bubbl-Board. Many storage

schemes are possible if the HBE-80 is to be configured as a

non-standard disk (viz., ncn-standard in relation to CP/M-86

track, sector and blocking schemes). It is not clear what

physical configuration of the MBB-80, as logically presented

to the CP/M-86 operating system, will provide the best

tradeoff between speed and usable capacity for the MBB-80.

The performance evaluation cf the MBB-80, as generated

into CP/M-86 in this implementation, was limited to simple,

-.: I tied tests of CP/M-86 utility operations. No attempts were

made to perform an analytical evaluation of the low-level

NBE-80 bubble operations in comparison to the corresponding

low-level iSBC 202 disk operations. The MBB-80 low-level

120

diaqncstic programs of Chapter V would provide an excellent

vqhicle for collecting data on the performance of low-level

MBE-80 operations. Additionally, no evaluation was made of

the operational and/or environmental ruggedness of the

MEE-80. Much work is possible in determining the

suitability of magnestic bubble devices for use in harsh

environments. The fully operational magnetic bubble system

will allow for testing and data collection under actual

operating conditions.

The modularized, table-driven BIOS developed in this

irplementation is easily adapted to new hardware. Magnetic

bubtle devices based on new, high-density technology with

parallel block/replicate architecture can be generated into

the BIOS by simply adding appropriate device-dependent

read/write routines and appropriate table entries. The

framework provided by this implementation of a BIOS will

lend itself to the addition of device types with a minimum

amcunt of re-coding. The implementation of currently

available 256K byte and 1M byte magnetic bubble devices into

the CP/.1-86 BIOS would provide a significant improvement in

the usefulness of this implementation as a host development

system.

121

Finally, this implementation of a BICS can support

multiple (up to 16) MBB-80 boards. With multiple boards

(disks), this implementation system would be suitable for

existing applications that utilize floppy disks. A total

magnetic bubble system (without flcppy disks) has been

implemented with a single MBB-80 board. This allows the

implementation of many applications on a total MBB-80 system

where the availability or desirability of floppy disks is in

doubt.

C. POTEWTIAL APPLICATIONS

Chapter II and Chapter III presented evidence showing

the current and future potential of magnetic bubble devices.

The capacities, access rates and transfer rates of magnetic

bubble devices are becoming ccmpetitive with, and often

surpass, most conventional secondary storage media.

Additionally, the characteristics of non-volatility, low

power consumption, environmental ruggedness, higa

reliability and low maintenance exhibited by magnetic bubble

devices give this technology a decided advantage over

conventional secondary storage media in certain

applications. Specifically, the applicaticn of magnetic

bubble technology to the military environment appears very

desirable.

122

... --- m-U ~ r'"- . .. v~

MIagnetic bubble devices reguire ogjy DC power sources in

the range of 1.0 amperes to 3.0 amperes at 5 vclt and 12

volt levels. Power consumption is approximately 32 watts

per megabyte of data capacity. Floppy disk devices require

bcth AC ad DC power sources. AC line frequency must be

within one-half (1/2) hertz of the required frequency

because of its effect cn disk rotaticnal speed and, thus,

the read/write tolerances. DC power sou.rces are in the

range of 5.0 amperes to 8.0 amperes at 5 volt and 12 volt

levels. Power consumption is approximately 350-400 watts

per megabyte of data capacity. Magnetic bubble devices can

operate in temperature ranges of 0 tc 70 degrees Celsius and

mairtain data storage integrity in the range of -65 to 150

degrees Celsius. Magnetic devices can operate reliably in

up tc 100% relative humidity. Flcppy disk devices can

operate in temperature ranges .f 10 to 40 degrees Celsius

and at relative humidity levels between 20% and 80%.

Operation of floppy disk devices outside these ranges can

result in distortion of the diskette, followed by oxide

deterioration, hygroscopic expansions, off-track recording

and finally, irreversable magnetic effects. Magnetic bubble

devices can withstand shock up to a 200G force and vibration

up to a 20G force. No comparable figures for floppy and/or

123

hard disks are available since excessive shock and vibration

are not considered as part of their potential

"- nvir-onments." Mean time between failure for magnetic

devices is typically 5-10 years as compared to 5000-8000

hour (approximately 1 year) for floppy disk devices. It

shculd be noted that disk devices, in general, require

periodic maintenance and magnetic bubble devices dc not.

Because of the stated advantages of magnetic bubble

memcry over other existing secondary storage technologies,
it can be used in applications requiring mass storage of

real time data that can be transferred to the system's main

memory for processing. Most military applications have only

the requirement for loading of prcgraas and relatively small

aucunts of data to main memory. In these cases, the large

capacity and transfer rate advantage of hard disks (relative

to magnetic bubble devices) would not be needed.

Consequently, magnetic bubble devices are a prime candidate

for use in real time combat systems that must "gc to war"

such as the U.S. Navy's AEGIS weapons system.

Several specific military applications are currently

using magnetic bubble devices. The Canadian Navy uses

bubble memory for data recording at sea. The U.S. Air Force

uses magnetic bubble cassettes to distribute and run F-15

124

aircraft maintenance diagnostic programs. Most military

applications requirinq a ruggedized storage medium are

currently utilizing tape cassettes and flexible disk drives.

Butle memory, in portable cassette form, offers significant

advantages over tape and disk media. k 2M bit bubble memory

package, capable of operating in a temperature range of -54

to 155 degrees Celsius, is being developed for the

Department of Defense by western Electric and Bell

Laboratories. It is targeted for use in a wide range of

military applications. [Ref. 23: pp. 89-90]

It is apparent that there exists a significant need for

magnetic bubble devices in military applications.

Currently, the industry is addressing the problems of making

magnetic bubble devices economically feasible, portable and

more reliable. Even if the cost per bit remains higher than

conventional media, the advantages of magnetic bubble

devices in both military and commercial environments will

present a convincing argument for the need and use of this

tecbnclogy.

1

125

PROGAN& LISTING OF DIAG8O.AS5

PILENAMES: Pascal = ME.DIAG80.TEXT
CP/M = DIAG80.COM

8080 DIAGNOSTIC TEST FOR PC/M MBB-80 BUBBLE MEMORIES *

CCNFIGURaTION:
; HOST - intel 8080, 16 addres* lines, MDS system,

data bus on 8080 is eight bi s.
BB- interrupts enabl2d, interrupts inhibited in

software, single-page mode, 20 address lines
decoding.

; Simple bubble test for the 8080 - writes or reads one; user specified page at a time - user also specifies test
patern if writing. Status jeqister of 4BB is displayed
to the console whenever usea or debugging.

; The MBB-80 controller base is defined by 'P~contbase'.
;EB-80 address select pins must ccrresponud o this

; address. This program uses memory mapped I/O thrcugh the
base address.

Jeffrey Neufeld and Michael Hicklin. CS-03, Thesis *

• Edos functicn numbers fcr calls *

idcsSconin equ 01H ;func # for Bdos read character
Bdcs$conout equ 02H ;func 0 for Bdos write character

3dcsSentry aqu 0005H ;entry for call to BdosBdcs~pstr equ 09H rfunc # for Bdos print string
Bdcs$reset equ OO ;func # for CP/H-80 reset to CCP
* !iscellanecus eq uates
6lank equ 020H ;Ascii blank
cr equ OdH ;carriage rqturn
eol equ '' ;end cf string char for pstr$fnc
if squ Oa ;line feed
:* MEB-80 characteristics (equates)
MBazaxpages equ 641 ;# of pa es on each bubble devics
Me. aqesize equ 18 ;hubble aevice page size

E' H!E-80 command byte masks
.18Sbus$check equ 00100000E ;$s qont busy? check (20H)
MESini Scad qu 000000012 ;intialize the controller (01H)
MB!readScmd equ 10000010B ;single-page read cad (82H)
MBSreset$cud equ 01000000B ;reset te controller (40H)
MB$SriteScad equ 10000100E ;single-page write cad (84H)
i mEB-80 Ccntroller and Pcrts
$ccntbase equ 04000H ;base of controller

Plpsello equ PScontbase ;page select isb
PS;selhi equ PScontbase+1 ;page select usb

126

--.

P$cmdrag equ P~contbase+2 ;command register
Plrdreg eq ~otbase+3 ;read data reli~ter

P :rrg J 3jcontbase+4 ;Write data. r gisterP1 tatrea qU P conthase*8 ; status, registerPslcpszl eq P~cntbae+8;loop size lst.
P$lccpszhi equ Plcontbase+9 ;loop 54.ze ast.P$;qsize equ. PSccntbaseel2 ;gage sizearegister.P~selbub equ P$coutbase+15 ;ub dev select register

MAIN FROGBAH CRIVIR*

DIAG80: ?i SP, bOOOH ;sakpitrto app 44LK
cai n:: ;disablte intercontrole
lxi D, $Snon ;addr of signon msgcall Prin $String ;rntt
call Init$Devs ;init the bubble devices

Loop: call Ask$lUser ;user want read or wr~.te?pi 'Q ;dces user want to quit?
1z Quit ;f sc, go quit
push PSW ;save u'ser bs answer
call GetSaubbi. ;get user bubble # for testcall GetSPage ;get userugaie # for testpop PSW ;restore ue Is answer

cp eadR ;is this a read?
1z Radif so, read ; elsenwriteWrite: call Get$Pattern ;get user test pattern

call WriteSPage ;write the pan to MB
Imp Loop;do until van s to quit

Read: call ioagspage ;read back the p age
call PrintSOut ;write out results

IpLoop ;do until wants to quit
Guit: lXII D, mIs21uit ;addr of done messagecall1. Pr' in ;rn it

my,, Bdos~rese ; unc # to quitcal B osSentry ;call Edos to terminate pgm

;**************end of Main Program **********

ASKSUSER subroutine*

;called frcm: Main.
Ask$User: *~basks user if wants read,write,cr quit

*parm in -none..
parm out -ans in reg A IRzread,Q=quit
* all else=write.lxi ,qlsqsaskf unc ;a ddr cf ask for func ag

call Prin $sString ;print it
call Read$Char ;get the user's answer
push PSW ;Save user's answer
call Crlf ;s kit alinJe after input
po PSW ;restore user's ans for ret

9re

127

L

CRLF subroutine

;called frcm: AskSUserGet$Bubble Get$Page,i Get$Pattern, Print$Cut.
Crlf: . issues a cart ret, line feed to console

par. in -ncne.
pars out - none.

avi i,cr ;cart ret
call Print$Char ;output one char

-v AIf ;line eed
ca Print$Char ;output one char
ret

GET$BUBBLE subroutine

;called frc: Main.
Get$Bubble: ; * gets bubble # for test from ccnsole

;. garm in - nonefarm out - loaas 'bubdevI variable.
lxi f,qsasq etbu ;addr of get-bubble msg
call Prin.$String ;print it

;get bubble number - one byte (0-71
call GetSHex ;get hex digit
ani Ofh ;clear high nibble
lxi D,bubdev ;addr bubdev byte
stax D ;st re it
call Crlf ;skip a line after input
ret

GETSHEX subrcutine

;called frcs: GetSBubble, Get$Page,, Get SP attern.
GetSHex: gts a number from cons, converts both;. nibbles to the hex value,ie. IF' keyed

, in = 46 scii, so FF returne& in k; parm in- ncne. ..
p arm out - double hex value in reg A.

call Aead$Char ;qgt char from crt
mvi H,08H ;hgh yte of table addr
mov LA -low byte - index to table
MOT ArM ;table lookup
retiI

GETSPAGE subroutine

;called frcm: Main.
Get$Page: ;* gets user page # for test from console

,; parm in - none.
* parm. out- loads 'pageno' variable.

lxi 6,Msg qetpq ;ad4r ogepage asgcall Pr int$Str.ng ;print et
;high byte of page number

call Get$Hex ;get hex digit
an Ofh ;clear high nibble
lxi D,pagenoShi ;addr pageno high
stax D ;Store it

;low byte - 2 ascii to 1 hex digit in pagenoSlo
ca I GetSHex ;get hex digit-hi
ani OfOH ;clear low nibble
nov B,A ;save bigh nibble
push B ;save high

128

call GetSHex ;get hex digit-lo
ani OfH ;clear high nibble
pop B ;restgre h. gh

;combine hi and lo
x- D,pagenoSlC ;arp a ±eno
staxD ;store i
call Crlf ;skip a line after input
ret

9

GET$PATTEBN subroutine *

;called from: main.
Get$Pattern: ;** gets user pattern for test frcm console

* parm ir - ncne.
*= parm out - loads 'attern' variable.

lxi ,as S et -p ;addr c get pattern msg
call PrinS rlng ;print t
call GetSHex ;get hex digit
ani OfOH ;clear low n.bble
mcv B,A ;save high nibble
push B ;save high
call Ge$Hex ;get hex digit
ani OfH ;clear high nibble
pop B ;restore high nibble
ora B ;combine hi and low
lxi D,pattern ;addr of pattern
stax D ;store #.
call Crlf ;skip lines after input
call Crlf
ret

INITSCONI subroutine

;called frcm: Main.
InitsCont: : inits the MEB controller

* parm in - none.
;* par.mot - none.

lxi f, sq$initc ;addr of init .sg
ca 1 Prin7$String ;print .t
lx B,MB$maxpa es ;pag esin each loop
lxi H,P$loopszlo ;loojs ze lsb port0~ MC ;loam isb of loo psize
lxi H.,Piloopszbi ;lcogsize asb Fort
mo ?,B ;loa ds b of loopsize
ixi H,PSugsize ;page size port
mvi Mo, 3pagesize ;load page size
lx. H PScmdreq ;ccmand register pcrt

MV. Sreset cmd ;issue reset command
ixi D,*sqSdcnec ;add- of done msg
call P rint$String ;print it
ret

• INITSDEVS subrcutine

;calje4 frC: Main.Ini$Devs: ; its each bubble device cn the MBB
* parm in - none.

*** pai.out - none.
lxi b,,sg nd ;addr of init msg
call PrintS tring ;print it
wvi %,0 first device #

129

lach~dev:pu h PSI ;save device 0

ad 039H co vert to ascii
call Prlnt$Char ;print it
lxi D,sq~dev ;addr of de msg
call Print$String ;print it
Pop PSI ;restore dew #
Lx HPsselbub ;select bubble port
mow & ;select this devicepur Pcure;save dew S

m hP§cmrg ;coaand register ort
my B:Msiniti5cud ;#issue init coaman d

call Wait ;let ccntroller work
lx Dmsqdone ;adar c9nt done asg
call Prin$String ;print it
pop PSW ;restcre dew #
inz A ;next dev.ce #
cpi 08H ;last device ?

Sach$dev ;if not, do next
xi ,msq$doned ;addr done msg

call Prin $String ;print itret
9J

LOADSPAGE subroutine *
;called frcs: Read$Page WriteSPage.

LoadSPage: -** loads the variable Ipagenc' to the MBB
pars in - none.

*** pars out - none.
lxi 8,pageno$lo ;addr of page # 1st
mOy A,9 ;to accum
ixi DPspsello ;page select lsb port
stax D ;load it
inx H ;to page # .sb
inx D ;to page select asb port
so DM ;to accum
sta D ;load it
ret

PRINTSCHAB subroutine

;called from: Crf InitSDevs,PrintS1,

Pr-intSChar: ;** calls .dos to write a char to console
pars in - char to write in Reg k.

* **pars out - none.
moy CA ;load parm for Bdos
evi C BdosSconcut ;func i for Bdcs write char
push PSW
call Bdoslentry ;call Bdos to writepop PSW
ret

PRINTSOUT subroutine

;called frc.: Main.
Print$Out: ;** reads page from MBB buf-writes to cots

parm in - none.
pars out - none.

lxi bms qp rt ;adr of print out msg
call Print$String ;print it .
zvi C,MBSpaqesize ;counter for bytes to read

130

Prt: lxi 0,PSrdreg ;read data reqister port
ldal D ;load from fi o to accum
push B ;save counter
call PrintS2 ;print what was read
pop B ;restore counter
cr C ;dec ccunter
Jn Prt ;read next if not 18D read
x D,us qdone ;addr of done usg
call Prin $String ;pr nt it
call Crlf ;sp a ineret

I * P subroutine
;called from: Ask$UserGetSBubbleGetSPage,

GetSPat tern, InitSCont, Init$DevsMain,
PrintSCutRead$Page, WriteSPage.

P:int$String- ;** prints a szring to conso.e via Bdos.
;* pars in - address of string in reg D.

paq a out - none.
mvi 6,Bdosspstr ;func# for Bdos print string

BosSentry ;call Edos to print

PRINT$1 subroutine

;called from: PrintS2.
PrintS1: ;** converts hex value of low nibble to

Ascii and prints it to console.
pars in ex value to print in reg A.
pars out none.

ani 6fH ;clear high nibble
adi 090H ;ccnvert hi
daa
aci 040H ;convert lo
daa
call Print$Char ;print char
ret

PRINT$2 subroutine *

;called from: PrintSoutWait.
Print$2: converts one yte hex to two Aksc i

digits and prints out one at a time.
pars in - hex value to print in reg A.
oars out - none.

push SV ;save low di qit
rrclrrc!rrc!rrc, ;move hi nibble to low
call Print$1 ;convert and print
pop P5W ;restcre low d11i .tca Prin tsI ;Ecnvert and print
avI Abl ank ;nlank char
call PrintSChar ;print it for separation
ret

131

"* BREADSCHAR subroutine

;called frcs: AskSUser, GetSHGZ.
aead$Char: ; reads one character from the consolep arm ir - none

arm out - cha read in reg A.avi CBdcsSconin ;runc for Bdcs read char
call B~osSentry ;call Bdos to read
an 07fH ;clear parity tit
ret

READSPAGE subroutine *

;called frcs: Ma4n.
ReadSPage: ; i 1nterfaces with MBB to read a .age

;** pars in - uses ,pageno' & 'bu bev vars
par. out - none.

call toadipagec load page number to EBB
;load tubble devic a uuer

lxi D,bubdev ;load addr of dev #
Idax 3 ;to accum
lxi H,PSselbub ;select bubble register portmov M, ;lead dev #

;issue read command
lxi DIms $rd ;addr cf reading msg
Cal Prin $String ;print "t
lx; HPScmdre ;.cnmanA register gcrt
mvi 1,!B$read5cud ;issue read comman.
call Wait ;let controller work
lxi D, sgSdone ;addr of done asg
call PrinSString ;print it
ret

WAIT subroutine

;called from: In$tSDevs,Read$SPage,
write$age.Wait: ; makes a delay while the centwok

par. in - no e.
pars out - none.

lhld0 ;30 cycle delay at 2.59fz
lhld 0 ;5 cycles each lhld ins%
lhld 0
lhld 0
lh~d 0

Waitl: lx1 H,PSstatreg ;status register port
now A M1 ;read status register
push PH ;save status
call PrintS2 ;print out status
pop PSW ;restore status
ani 3B$busyScheck ;busy mask checkInz Waitl ;if usy, check again
xi HPSstatreq ;stat reg port-get last stat

mow A,M ;read status register
call PrintS2 ;print out status
ret

132

•RITE$PAGE subroutine

;called from: ain.
Write$Page: ;** interfaces with the 5BB tc write a page

;** parm in uses 'pagenot & ebubdev' vars
tarm out none.

call LoadsPage . oad page number tc 5BB
;load 18 test bytes to Ifo

mv4 C,MBSpagesize ;counter for bytes (18D)
Ixi D,PSwrreg ;write data register port
lxi H, pattern ;addr of pattern tc write
mow A, ;load pattern to accum

intel: Itax D ;write a byte to fifo
i cr C ;dec counter
jnz Writel . *jump if not 18D written

;load bubble device numer
lxi D,bubdev ;load addr of dev #
ldax D ;to accuu
lxi HPSselbub ;select bubble register portioi MIAebu ;load dew #mIov S1,

;issue write command
ixi D,msqSwrt ;addr of writing asg
call Pri SString ;print it
lxi H,P$cmdreg ;ccamanu register port
mvi M, BSwrite$cmd ;issue write command
ca.l wait ;let co troller work
lxi DmsqSdone ;addr cf done msg
call Print$String ;print it
ret

DATA AND VARIABLE AREA

tutdev d 0
paqenc$lo db 0
pagenoShi d 0
pattern db 0

msqSaskfunc db 'Enter a R to read, G to quit, all else
db 'is write: I,ecl

msgSdev db ' device # initinq. ',eol
msqSdone db done.',cr,lf,Qol
msgSdonec db 'Done with conrroller.1,cr,lfeol
msgSdoned db 'Done with devices.',cr,lf,cr:lf,ecl
msgSqetbub db 'Input 1 digit bubble # (0-7b: ' ecl
IsgSqetpq db 'Input 3 digit hex page # (0 0-2 01: ' eol
msgsgetpt d 'Input 2 digit hex test pattern (00-FFf:

db eol .
msqfinStc db 'Init4a1zjnq ccntroller.... ',eol
msg initd db 'Initiaiiz in the devices... .,cr,lf,eol
*sqSprt d 'Page read is: ' eol
"sqSquit d If,cr.if,cr,'$* tnd of Test **S,lf,cr,eol
msgSrd db 'Reading a page... ',eol
msqSs-.qnon dt If c' I ** BB-80 CE M-80

db 'DHAG OSTIC TEST **1 cr If cr lf,ecl
msqSwrt dt 'Writing a page... ';eoi

!9

/

I133

/

;table for converting ascii to hexadecimal
orq 830Hdb OOH,IIH,22H,33H,4.8,55a-,66H,77H,881,99H

org 0841H
db OaaHObbHOCCH,OddH.OeeH,OffH

End of Prcg ran

END~ 0100H1

134

PROGRAM LISTING OF DIAG86S.A86

PILENAMES: Pascal = NB.DIAG86S.TEXT
CP/M = DIAG865.CMD

* 8086 DIAGNOSTIC TEST FCR PC/M MBB-80 BUBBLE MEMORIES *

• CCNEIGURATION:
HOST - Intel 86/12A SEC 20 address lines, wDS system,

Data bus on 86/12A ccnverting to low 8 bits
* all high.
* MBB - interrupts inhibited, single-page mode,

20 address lines.

; This program writes and then reads a test pattern in
; Each page of each bubble chip on BEE-80 boazds. Error
; diagnos ics are Drinted as errors are found. An error
; lcg is printed at the end of each pass. Testing is
; ccntinuous until any character is keyed into th econsole.

The MBB-80 controller base address is ;ead into variable
'ME contbase'. MBB-80 address select pins must correspond

; c his address. This program uses memory mapped I/O
; through the base address.

Jeffrez Neufeld and Michael Hicklin, CS-03. Thesis *

Edos functicn numbers fcr calls *
hdcs conbuf equ 10 ;console input string funct #
Bdcs-conout equ 2 ;ccnscle output char funct #
Bdcs-constat equ 11 ;get console status funct #
Bdcs-pstrinq equ 9 ;rint string until '$' funct #
Bdcs-reset egu 0 ;CP/ N-86 reset to CCP funct #

E* NE characteristics *
MB buflen equ 18 ;tuffer length for single page
MB-maxdevs equ 7 ;tubble devices are #0-#7
M8-maxpages equ 641 ;# of paqes on each bubble device
M-pagesize equ 18 ;bubble device page size

jM NBB command byte masks (with interrupts inhibited)
MN Bu.7 chck equ 00100000E ;Gcnt bujy? status cheik (20H)
ME-in:.--cma equ 100000 1B ;initiallze the contrcller 8S)
MB-read-cmd equ 10000010E ;single-page read command (32H)
E--reseE cmd equ 110000002 ;reset the controller (COH)

MB-writecmd, equ 100001002 ;single-page write command (84H)
* Niscellaneous e uates *

6lank equ 20H ;Ascii blank
corbuf size e~u 80 ;size for input buffer for console
cr egu OdH ;Ascii carriage return cc'ntrcl char
!f equ OaH ;Ascii line feed control char

135

MAIN PROGRAM- URIVTE *

CSEG

bIAG86S: call Set Up ;do initialization
call Get-Cont &ddr ;get address of MBB-80 base
call IniT ConT ;init the cont and devices

est loop:
call Get Test Buffer ;get a test pattern fill buff
call Write Pa-e ;write a page to burble
call Read Pag ;rPaa a ae tom bbble
call ChecK rors ;check efrrs in write/read

;advance to next page in a device see if last page
inc curr page no ;increuent current page #
cup curr-page-nc,MB maxpages-1 ;last page on dev?
Inz Test-loop ;if Lot test next page

;was last pa e,advance to next. bble device on board
mov DXo ffset usg donebub ;addr of done bub .sg
call Print String - ;write asg to conscle
cup curr ub no,MB_2axdevs ;last bubble on board?
jz Done pass *if sc, done with a pass

;prepare to test next buible devige
inc currbub no ;if nct, increment device #
qkov currpage no,O ;set page number back tc zero
inc err ;pr c next entry (dev)imp Test loop ;go test next device

;finished wifh all devices on board, print summary
;prepare to run another pass if not stopped by user

rcnepass:
call ErrorSumuary ;print error summary
call End Pass ;end of pass housekeeping

;see if anyThing keyed in at the console
mov CL,Bdcs constat ;function # for Sdcs call
call Bdos ;call Bdos to get ccns status
cup AL,01 ;O=cha; keyed in, uu=notiing
jz Done test ;Something keyed, user quits

;user wants to continuemov DX,,offset 2Eg testing ;addr of testing 2sg
call Print String- ;wrire ms2 to conso e
imp Test loop t ;keep testing

;user wanted-to quit the testing
rcne test :

call Close Up ;do end of run housekeeping
moV CLBdzs reset ;function # for Bdcs call
mor DL,0 ;parameter to release memory
call Bdos ;call Bdos to terminate prog

[t***********end of Main Prcgram * * **~

-*B.P BDOSJ M/6 subroutine *

;called from: Close gp,ainGet Cont Addr,
d. ty Print-St in?, Put har.

Bdcs: ; entry tc Bdcs via sof ware interrupt 224; para in -caller loads regs as per req
**- parm out as supplied by Bdos returns

t 2 ;80 software interrupt
ret

136

CHECK ERRORS subroutine *

;called from: Hain.
Check Errors: ;** see if read what was written- par. in - none

,o parm out - none
Boy iL,pattern ;pattern to accus for manipul
.ov CX,9B buflen ;counte; for loop thru buffer
mov BX,of~set test-buffer ;index into test bu fer

Testbyte:
cap BXe,AL ;compare buff to patternjz &ooa test ;if good, check ne ez byte

push WXpsh BXlpush X ;save at/buff addr/cntr
call Err Out ;it is bag, #rint error
call Lo?-Error ; og errcr
pop CX: op BX!pcp AX ;restcre cntr/buff addr/part

Gcodtest:
inc BX ;increment index
loop Test byte ;dec CX and loop if not zero
ret

CLOSE UP subroutine *

;called from: Main.
ClcseUp: ;** reads garbage from console,issues goodbye* pars in - none

* * pars out -ncne
;clear siop input characters from the console buffer

moy CL, Bdos ccnbuf ;input console string func#
mow BX offsft cons buff ;area for cons input
moy byle ptr [BX],*onbuf size;tell Bdos buff size
co DBX ;loau parameter reg for Bdos
call Bdos ;read the console

;issue the qoodbye message
call Crlf iskit extra line
mov DX,offset msg en test ;addr of end test msg
call PrintString ;write msg to consolere.t

CRLF subroutine *

;called from; Close UpGet Cont Addr,
;End Pass,Init Ccnt7Main,PEnt 3trnSet Up.

Crlf: ;,* gends carriage return,linefeed so co0 s
* par. in - none

; pars out - ncne
mow AL,cr ;carriage return char
call Putchar ;write it to console
mow AL,lf ;line feed char
call Putchar ;write it to console

END PASS subroutine *

n P;called from: Main.
End ass: .** performs end of pass housekeeping

;** par. in - none
;** pars out - none, effects global vars

;convert pass # to Ascii anA print after pass message
Mov AtL,pass no ;pass number to accum
call HexToISci ;ccnvert to Iscii

137

I.I

mov EX,offset as d pass;addr of pass # in asq
mov b te ptr [BXI3,DI -load high byte tc msg
inc ,BI ;Lump to next position in asg
mo byte ?tr [BXJDL ;load low byte to usg
mow DX,offset msg dcnepass ;addr of done pass msg
call Pr-nt String ;wrjte usg to console
call Crlf ;s a v eeps

;inc pass number and reset all variables rob new pass
inc pass no ;add one to pass number
mow newalss flagi1 ;set new-pass fla CA
mov curt -bu no, 6 ;reset to bubble levice 0
mov curtrpagg no 0 ;reset page number to 0
mow errptr,offsed errlcg ;reset addr of error log
ret

- !, ERR OUT subroti ne *

;called from: CheckErrors.
Err-Out: ;** issue an error message to the console

parm in - BX addr in buff of byte error
; pars out - none, effects global vats

pu BX push BX ;save addr of error twice
cap newpass flag,1 ;is this a new pass ?
Jn Prt err ;if noc print error now
mov newpass flag,0 ;turn fia off
nov DX,offsit asg header ;oau addr of header
call Print String ;print the header

;put zeros intb all error counts 4n the log
aoy CX,MB 2axdevs 1 ;count for # of dew to loop
mow BX,offset errlog ;addr of error logClrlog:ao v byte ptr [BX],O ;clear log entry error count
inc BX ;bum pointer to next enry
loop Clrlog ;dec CX and loop if not zeroPrt err:
mow AL,curr bub no ;bub dev # to accum
call Hex To Iscil ;ccnve;t tq Ascii
mow msg-e dev,DH ;move in high byte to msg
mov msgd-e-4ev1,EL ;Move in low byte to msg

;load page number of error
Mov &L,byte pt; curr page noel;hi byte cf page#
call Hex-To Ascii ;convwrt to Ascti-
mow msg-e page,DC ;high byte to msj(dig 1)
Mow msg-e page+l,DL ;low byte to asqig 1) I
mov AL,5 e ptr currpage no -lo byte of page#
call Hex TO Ascii ;ccnwert to Asci i
mow msg-e pagee2,DH ;high byte tomsj4dig 2)
mov msq-e-page+3,DL ilow bte s ig 2)

;compute and load byte cfset or error in page
pop BX ;restore addr err byte offset
addr buff equ fofset test- buffer ;fcr ccmputat-,on
sub -BX addr buff ;compute err offset in buff
mov AL,BL ;offset to AL for conversion
call Hex To Ascii ;conve;t to Ascii
mov msg-e !yte,DH ;move in high byte to asg
mov msg-e-byte1,DL ;move in low byte to msg

;load pattern that was written and what was read back
mov ALpattern ;load pattern just written
call Hex To Ascii ;convert to ascii
mov msg-e wrote,CH ;move in high byte to mag
mow msg-e-wrote+1,DL ;move in Jow byte to *sq
pop BX - ;restore add: o err offlet
nov AL,(BX_ ;load byte just read back
call Hex To Ascii ;convert to Ascii
mov msg-e reaj.DH ;mcve ;n high byte to meg
mov msg-e-real 1,DL ;move in low byte to nag

138

mov DI, offset usg err ;addr of total error asg
call Print_String ;print the error message
ret

9 ERROR SUMMARY subroutine *

;called from: Main.
Errcr-Summary: ;** outputs summary of errors on each device

;* pars in - ncne
: arm out - none

mov bx,offset msg summary ;addr of summary meg
call Print String - ;rite sg to console

;step thru errlcg-convert tc ascii - print err counts
mov CXMB aaxdevs.l ;ccunt ior looF - # of devs
nov BXgof set errlog ;addr of error log
nov DI,offset msgccunts ;addr of msg sum counts

Frtj oop:
aow AL(BX . et count from error loq
push HXIpus CXIpush I ;save addrcounterindex
call Hex To Ascii :ccnvert to Ascii
pop DII-po C1l pop IX ;rest index.counter,addr
mov byte ptr (DIJ,DH -load high byte tc msg
inc DI ;Lump to next pos in mesg
mov b te ptr [DI],DL ;load low byte to.msg
inc ye p ;bump to nex poe in msg
moy b .e ptr [DI),blank ;Ascii blank tq msg
nc DI ;bump to next Eos in msg

inc Bx ;increment buff addr to next
loop prt loop ;dec CX and loop if not zero
mov DX*5ffset msg ccunts ;addr of msg sum counts
call PrInt_Strinq ;write msg to console
ret

GET CONT ADDR subroutine *

;called from: Main.
GetContAddr: ;** gets base segment address for the MBB-80

;* controller from the user at the console.
parm in - none
2 arm out - none updates ME contbase

mov !X offset msg getaddr ;addr of let cont asg
call Prnt String ;write msg to console

;get base addess keyed in by the user
3ov CLBdcs ccnbuf ;input console string func#
mov BX offsit cons buff ;area for cons input
nov blde ptr CBX],cnbuf size ;tell_8doa size
mow 0.,1 ;loa3 Darm for aos call
call Bdos ;read irom console
call Crlf ;skip a line after input

;make sure only four digits keyed in
2o. BwEoffset cons uff .1 ;byte 1 tells how many
crp byte ptr (3X],Z ;see if exactly fcur read
.ne Error input . ;i nf t ', error

;maKe sure all four digits are valld hex
aov SX,offset ccns-buff.2 ;bjyte2 sarts data
xor AX,AX ;used for ascii table index
mov CX,4 ;number of digits to check

Check valid:
mow AL, BX ;move digit to AL for chking
cup AL,030 ;check to see if tco low
lb Error input
cup AL,O#H ;check to see if too high
ja Error input
crp AL,O39H ;chk mid-invalid (3aH-4OH)

139

Tbe Valid hex
cmp AL 94-IH
Jie Valid hex
iups Error-input ;it is in the middle - error

Valid hex:
3ub AX,030H ;-30H to get table index
push BX ;save buffer addr
mov BX,AX *AX is index to table
mov AL,Ascii tatle[BX] ;table look up
pop BX ;restore Duffer addr
qiov bite ptr[BX],AL ;store 4e; back in buffer
inc B ;next digit
loop Check valid ;go checl it

;convert 4 valid hex digits to a binary number in AX
mov BXoffset ccnsjbuff+2 *byte 2 starts dataIov AH,[BX] ;get lirst d git
mov CL, ;shift it to high nibble
shl AHUCL
inc BX ;increment index
or AH,CBX] ;2nd dig oried intc low nibb
Inc BX ;increment index
mov AL, x ;get third di it
mov CLs ;shift it to igh nibbleshl AL",CLinc BX ;increment index

or AL, BX I4th dig or'ed into low nibb
;store contro2er base address that was built in AX

mov MB contbase,AX
Imps GeT contret ;go return

;error in input, issue message, retry
Error input:

Bov DXoffset asg errinp ;addr of error message
call Print String ;write msg to console
call Crlf - skip a line
et ps GetCont ddr ;go ask again

Get coat ret:

GET TEST BUFFER subroutine *

;called frcu: Main.
GetTestBuffer:;** increments pattern and loads test buffer

;** pars in - none
* parm out - none, effects global vars

inc pattern ;add one (1) to patternSov lLpattern ;pattern to accul for manilulmov CXMB buflen ;loop counter - s1ze of bu f

mov BXoofrset test buffer ;set index nto buffer
Fill: moV [Bi],AL - ;load a byte

inc BX ;bump index
loop Fill ;dec CX, loop if nct zero
ret

HEX TO ASCII subroutine

;called from: End PassErrOut ,rror Sumsfry.
HexTcAscii: ;* converts a hel num er to its hex-&sci

parm in - AL has hex byte to ccnvert
cnp parm out - DX contains hislo Ascii bytes

;convert low nibble of AL to Ascii hex di 4t
mov AHAL ;save hex # for ni nibble
and AL,OfH ;clear hi 4 bits lc nibble
add AL,90H ;handles 0-9 (90H iOH-130H)
daa ; decimal adjust
adc AL,40H ;handle a-fs (41H-46H Ascii)

140

Aaa ;decimal adjust**
mov D.,AL lov nibbe A sc. for ret

;convert high nibble of AL to AscII hex aigit
mov ALAH ;move to AL for aa ops
ow CL,4 ;set count for shr 4

5q5 ACJR;sbi tt hi nibbie too10 nibble
a AL,9 ;handles 0- (90H+4OH=130H)
daa ;decimal adjust
adc AL,40H ;handle a-fa (41H-46H Ascii)
daa ;decimal adjust
mov DH,AL ;high nibble Ascii for ret
ret

INIT CONT subroutine

;called from: Main.
Init Cont: ;** inits the MBB controller and each device

* par, in - none
* p arm out - none

MO 6X,o fset. sg initbegin ;begin init asg addr
call Print Strtng ;wri e asg lo console

;initialize page size and mincs loop size
Mov AX, B contbase ;address of controller base
nov ES,AX- ;load ES to address bubble
nov AX, B maxpages ;pages per bubble device
MOv ES:P loopsize lo ;loopsize low byte
nov ES:P-loopsize-hi,AH ;loopsize hi byte
0 ov ES:P-gagesizere, paje ze;page size reg

;issue reset ?! mman t e c t o ier
nov ALMB reset cad ;reset mask byte
nov ES:P Eund r q,AL ;issue reset command

;initialize elch b bb e device
Mov CXMB_maxdevs 1 ;count for loop-# of devices
moy ALO ;device # to initialize

Fcr .ach:
mov ES:P select bubdev,AL ;select each device
Mov ES:Pcmnd reg,MB init cad ;init this device
push AX!.push C7'push 7S ;sive bubble # ccunter,ES
call Wait :wait for controller to work
pop ES! pop CX! Pop lX ;restore ES,cntr,bubble *
Inc AL ;next device number
loop For each ;dec CX, loop if not zero

;issua mss Tnudicatizng in.t done and test in progress
Mov DXoffset asg initend ;init done message addr
call Pr2_nt String ;write asg to console
call Crlf - ;skip an extra line
Mow DXoffset ms- testin ;testing message addr
call PrintString- ;writ e msg to console
ret

A * LOG ERROR subroutine *

;called from: Check Errors.
LcqError: ;** log the error fOr use 4n pass printout

;* para in - none
: parm out - none effects global vars

MoT x, errptr ;addr of error log to BX
inc byte ptr (BX] ;add cue to error count
Inz done log ;if not overflow all done
dec byte-ptr (B] ;inc tco big, reduce to max

dcne log1

141

L sPRINT STRING subroutine

;called from: Close ,End Pass,Err 0utError-Ssmiar?,GetCon-. Addr,

Print_Strng:;** prints huffer fddressed until "i hit
;** par in - address cf buffer in DX
**p arm out - none

wmov K, ospsring ;function # for Bdcs call

Call Bdos ;call Bdos and prn

cafCrlf ;skip a line
ret

RUTCHAR subroutine *

;called fro: Crlf.
Puchar: ;* writes haracter froa L to cosole

;* parm in -outpu char in AL
;**parm out - ncne

3ov K, os conout ;function for Bdcs call
Moy DL,AL ;load char to Bdos regcall Bdos ;call Bdos and send

~ret

: READ PAGE subroutine

nov Pag a;called from: rain.
S ; preads a page into test buffer from bubble- ;* para in n one

ovE:pare out -n ae, effects global wats
;select page numbermov AK,MB contbase ;address of controller base

mov ES,AX- load ES to address bubble
mow AX,curr page_ no current page nuaber testing
mov ES:P pagesel11 ,L ;page select lo byte
mow ES: -pagesel-h A H ;page select hi bye

;sele-ct bubble device-ani issue read command
mow AL,curr bub no ;curr bubble number testinq
Mov ES:P select-ubdevAL ;select current dev
-ov ES:P-cmnud g,SSread cad ;issue read FIFO
pusb ES saye-4S
call Wait ;wait for con-roller to work
901 ES ;restore ES

;read rom MBB FIFO tuffer into test bu .er
nov CX,Ma buflen ;ccunt for loo -btffer size
mow BX,ofTset test buffer ;set mnax into buf er

Feadbyte:
nov AL ES:P rdata reg ;read a byte intc accus
mov Bf],AL ;;cad accua into buffer
inc BX ;increment index
loop Read-byte ;dec CX, loop if nct zero

:* SET UP subroutine

~;Cal ed from: Mfain.
SetUp: * inits variables and issues signon sag" -;**pa-s in -none

[* .paia out -none, effects glo~bal warsI
call rlf ;ski p an ext.-a line
call Crlf ;ski.p an extra l-ine
mow DX off'set asg mignon ;mignon nsg address
call Print-String ;write msg to conscle

142

nov DXroffset msg version ;version msg address
call Print String ;write msg to console
call Crlf - ;skip an extra line

;initialize all variables and f~aqs
nov newpass flag 1 ;flag indicating neo pass
nov curr buB no,6 ;current bubole # to
nov curr-pagg nc,O ;current page # to 0
uov pattirn, 11 ;initial test pattern is 1
OV pass no,1 ;nitial pass I is 1

nov errptr,offset errLog ;add of error log
ret

WAIT subroutine *

;called from: Init ConfoRed Paqe,UWritePage.
Wait: fr checks status 3f n conr lr for-busykeeps checking (wait) until not busy

;** pars in - none
mv i arm out- none

nov LX,[B contbase ;address of controller base
Bov ESAX- ;load ES to address bubble.See zero:nov ALES:P status reg ;get status register
and ALMB_busycheck ;is it all zeros ?
jz See-zero ;if so,keep checking for one

Ccnt-busy:
nov AL,ES:P status reg ;geT status reqister
and ALMB bisy che k ;see if busy, and to mask
lnz Cont_'usy ;if busy, check again
ret

9

WRITE PAGE subroutine

;called from: Main.
Wzite_Page: ; writes a page from testbuffer to bubble

parm in - none
;* parm out - none

;select page number
mov AXMB contbase ;address of controller base
mov ESAX ;load ES to address bubble
mov AX,curr page no ;current page # testing
nov ES:P pagesel-.AL ;page select 19 byte
mov ES:P-pagesel-hiAH ;page select hi bite

;write from t1st buffIr into the MBB FIFO buf er
nov CX, B buflen ;ccunt for loop-bufier size
Nov BXoffset test buffer ;set index into bufferUri.ebyte:
nov AL, B] .ibyte from buffer tc accum
nov ES:- Pwatareg,AL ;write a byte to MBB FIFO
inc BX ;increment index
loop Write byte ;dec CX loot if nct zero

;select bubble-number and write fIFO uffer to bubble
nov AL,curr bub no ;load accum w/ bub#
nov ES:P select-bubdev,kL ;load bubble device *
nov ES1P-cmnd rig,MBSwrite cmd ;issue write FIFO
call Wait -wait Tor controller to work

DATA SEGMENT AREA *

DSEG

143

org 0100H ;leave room for base page

------- Variables-a-- ------------ *
iscii-table db 00H,01H,02H,03H,04H,05H 06H, 07HO 8H,09H

b 7 ;for Ascii 3aH to 404 - Invalid
b OaSObfl OcH, dH, OeHofH

cons buff rb contuf-size. ;area for cons stjing input
curr-bubjno rb 1 ;bubble device # 0-1 testing
curr-pag-no rw I ;bubble paqe number testing
erriog rb RB maxdevs+1 ;table for dew error count
err;tr rv 1 - ;pointer to errlog - index
MB contbase dw 0000H ;hase segment add; fcr SBB-80
neipass flaq rb 1 ;flag fcr indicating new pass
pass no rb 1 ;pass number
pattern rb 1 ; est pattern
testbuffer rb MB_buflen ;iuffer to hold test data

**------ string data area for console messages ----- *

isq counts rb ({8Iumaxdevs.l)*3)
db'

msqdcnebub db ' Done with a bubble.$'
msq donepass db 'Done with PASS,.eg_d_pass jb 2
asg_endtes . db *User terminates testing...'

db 'returning to CP/flI$'
sqerr db ' I

seg_,_dev rb 2db I'
nsg_e_page rb 4

db ' I
zsg_e_byte rb 2

dbrsg_e_wrote rb 2
db

ssg_e_read rb 2
db 'S,

msqgerrinp db '**ERRCR: 4ot exactly 4 diqits entered,'
db ' or invalid hex digits!er$

msgqetaddr db cr,lf'Ke; in .4 digit sement tas addr'
db 'ess r 8-80 ccnt;ol r.. cr, f .

4b 'Must be in hex (4 digits, tnef CR only)'
db I=> S1

msgheader ab 'Bubble Page Byte Wrote Read$'
msg-initbegin db 'Initializing the controller...$'
msg-initend db 'Contrcller is initialized.S'
msgsignon db

db '** MBB-80 CP/8-86 DIAGNOSTIC 72S *"3
msqsummary db 'Total errors for each device (0-Y$S
msq-testing lb :Testing...Hit any char (8 CRI)

1b to stop after this pass.$'msg_versi;on dbII
db 'single-Page Mode Ve;sion 1.0s'
1b 0 ;GENCHD to fili last address

***********~a end of variables * ********8******==,8*

1ESEG

• * MBB-80 CONTROLLER ANr PORTS

paqese~l lo rb 1 ;is byt.e for page select, (0)
P_-pagesel-hi rb I ;as 2 tits fr page select, (I)

P cund reg :b 1 ;conand regis;er, (2)
Prdata req rb 1 ;read data register, (3
P-wdata-req rb 1 ;vr ite data registe (4
P-statusr.ag rb 1 ;status regist er, (if
P-pagecnE lo rb I ;is byte for page counter, 6)
P-aqecn-h1 rb 1 ;2s 2 bits for page cntr, ()
P1 opsIze 1o rb I ;Is byte for minor lcop sz, (8)
P-1ccpsize-hi rb 1 ;as 2 bits for min lo sz,(9)
P rw 1 ;internql use(laqe oS (1,B)
P aqesize req rb 1 !We size reg s er, (rf

- -bw 1 ;1e use onl, [D,...
select bubdev rb I ;two uses: 1 e le dev (F

P-int flag equ Pselectbubdev ; interrupt flag (?
;*******~e~end of Ccntrcller and Port definitions *********

End cf Program DIAG86S *

END

1145

__ _ _ _ _ __ _ _ _ _ ii

PROGRAM LISTING OF DI1G86f1.A86

; FILENAMES: Pascal = MB.DIAG86M.TEXT
CP/N = CIAG86N.CMD

; 8086 DIAGNOSTIC TEST FCS PC/. 6EE-80 BUBBLE MEMORIES

CCNFIGURATION:
* fHOST Intel 86/12A SEC 20 address lines, IDS system,
* Data bus on 86/11A converting to owy 8 bits

all high.
MBB - Interrupts eiabled if using vecto;ed interrupts.

Interru ts disabled by disconnecting the nter-
; r upt jumper on the MBB board if not vecto;ing
; interrupts. Multi-page mcde, 20 address lines.

T This proq ras writes and then reads a test pattern in each
; sector of each bubble chip on MBB-80 boards. Error
; diagnostics are printed as errors are found. kn error log
; is printed at the end cf each pass. Testing is ccntinaous
; until any character is keyed into the console.

; The 1BB-80 controller base address is read into variable
; 'NB contbase'. BB-80 address select pins must correspond
; to This address. This prcgram uses memory napped I/O
; through the base address.

; Jeffrey Neufeld and Michael Hicklin CS-03, Thesis

:= Edos functicn numbers for calls *
dcs conbuf equ 10 ;console input string function #
Bdcs-conout equ 2 ;conscle output char function 8
Bdcs-constat equ 11 ;get console status function #
Bdcs-pstring equ 9 ;Print string until S' function #
Bdcs-reset equ 0 ;CP/M-86 reset to CCP function #
;* 8259a PIC port assignments
PICpO equ O cOR ;8259a port 0
PICpl equ Oc2H ;8259a port 1

HEE characteristics
NB tuflen egu 14 ;buffer length for sectcr
E-int mask equ 11111101E ;mask to enable 1B1 interrupt

• Bint-type equ 17 ;ty e 16 is IRO as defined to
259a PIC in RO init. BB will

;generate interrupts over this;ye.
ME maxdevs equ 7 ;bubzle devices are #0-07
MB-uaxpaqes equ 641 ;# of gages on each bubble device
NB-maxsectors equ 80 ;# of log sectors on each bub dev
ME-pages sec equ 8 ;# of pa es.per logic*1 sector
HB-paqes-ze equ 18 ;bubble levice page size
HB-skew equ 12 ;skew for page translation

146

B* BE command masks and status masks *
N BusZ check equ 001000002 ;cont busy? status check (20H)
MB-in i-cad equ 000000012 ;$nit thq controller (01H)
MB nt Inhibit equ 10000000B ;int inhib~t/reset mask (6OH)
NB-chkint mask equ 10000000B ;mask testing if int set (80H)%!B-multi Paqe equ 00010000B ;mult*Iage mode command 10HE
MB:read amd equ 00010010 ;multi- age read command (12H)
NB-reseT cad equ 01000000B ;reset the controller (401H
MB-write-cad equ 000101002 ;multi-page write command (14H)
; Miscellaneous equates *
lank equ 020H ;Ascii blank

conbuf size equ 80 ;size for input buffer fcr console
cr equ OdH ;Ascii carrage return cent char
true equ -1 ;for conditional assembly
false equ net true ;for conditional assembly
i. equ OaH ;Ascii line feed contro, achr
vectoredin t equ false ;this controls the assembly.

;true=use ha;d interrupt to CPU.
;false=poil mat reg on MEB.

• MAIN PROGRAM -RIVER

CSEG

DIIaG86M: call Set Up ;dc initialization
call Get-Cont Addr ;get base address for OBB-80
call IniT Con!. ;init the cont and devices

Test-loop:
call Get Test Buffer ;get test pattern, fill buff
call rite Sector ;write a sector to bubble
call Read Sector ;read a sector from bubble
call Chec! Errors ;check errors in write/read

;advance to next sector in device see if last sector
inc curr sector mo :increment current sector #
crp curr sector-no,mi axsectors ;last sector ?
jnz Test-loop ;If not test next sector

;was last seZtor,advance tc next bub dev on board
mov DX,offset msg donebub ;addr of done bub msg
call Prlnt string ;wrMite msg to console
cmp curr Dub no,MB-maxdevs ;last bubble on board?
jz Done-pass if sc, done with a pass

;prepare to Test next bubble device
inc curr hub no ;if not, increment device *
*ov curr-sectcr-no,O ;set sector # back to zero
inc err p'r ;ptr tc next entry (dev)
.ip Test loo ;go test next device

;finished wilh all devices on board, print summary
;prepare to run another pass if not stopped by user

Ecnepass:
call Error Summary ;print error summa
call End PIss ;end of pass hcuseikeping

;see if anyl=hing keyed in at the console
nov CL,Bdos constat ;function 0 for 8dcs call
call Bdos ;call Bdos to get cons status
cmp AL,01 ;01=char keyed in, O0fnothing
jz Done test ;something key ed, user quits

;user wants Eo continue
mov DXoffset ,sg-testin ;addr of testing msg
call PrintString ;wrie msg to conscle
imp Test-loop ;keep testing

;user wanted to quit the testing
Ecne test:

call Close Up ;do eno of r~n housekeeping
mov CL,Bdts_reset ;function # or Bdcs call

147

mov DLO ;parameter to release memory
call Bds ;call Edos to terminate prog

; ,,,,-,***,*,***,, end of Main Program ,

BDOS (CP/M-86 subroutine

;called from: Clcse Up, Get Cont Addr, Main,
Print St ring Putciar.

Bdcs: ** entry to Bdos via software interrupt 224•;* par. in caller lcads regs as per req
:** parm out - as supplied by Edos returns

int 124 ;8089 software interrupt

CHECK ERBOBS subroutine *

;called from: Main.
Check-Errors: ;,* see if read what was written

-} par. in - none
.-* pars out - none

mov AL,pattern ;pattern to accum for manipul
MoT CX, B buflen ;counteV for jocp thru buf er
mov BXof'se test-buffer ;index into test bufferlest byte :
omp [BX],AL ;ccmpare buff to pattern
jz Good test ;if good, check next byte
push AXtpush BX~push CX ;save patt/buff addr/cntr
call Err Out *it is bad, print error
call Loq-Error log error
o p CX pop BXpop AX ;restore cntr/buff addr/pattc od.tes. t:
Inc BX ;increment index
loop Testbyte ;dec CX and loop if not zero
ret

CLOSE UP subroutine *

;called from: Rain.
Clcse Up: ;** reads garbage from console,issues goodbye

;** par, in - none
* "*arm out - none

;clear sop nFut charactqrs from the cons9le buffer
mov CL,Bdos conbur ;input console string func#
MOv BXoffsit ccns buff area for ccns input

Sm2ow byte ptr CBI1,zonbuf size;tell Bdos buff size
Mow DX,BX ;lca3 Farameter reg for Bdos
call Bdos ;read the console

;issue goodbye message
call CrIfiski extra lane
MoT DX,offset asg endtes ;addr of end test asg
call Print String ;write asg to console
ret

148

• * COAPUTE PAGENO subroutine ,

;called from: Read Sector, write Sector.
Ccmpute_Paqeno:;** computes 1st pige # for a given sector

;** parm in -none, works on curr sectcr no
. par, cut ncne, pdates curr-page n3

xor hAX rm ;se A to zero
cap AL,curr sector nc is it sector 0 ?
iz Store page - ;f so, no translation
xor CX,CX- ;clear CX for counter
aov CL,curr-sector-no ;cntr for translate loop

Add-skew:
add AX,MB skew ;# of pages between sectors
clc ;clear carry
sbb AX,MB maxpages ;mod tc # ol jagesiae Dec sector ;jumf if positive (CF=)
add AX,'B_maxpages ;wen. neg, add back # pages

rec sector:
loop Add skew ;dec sector *, add skew again

Stcrepage:
Mo curr-pagenc,AX ;store page numberret

CRLF subroutine

;called from; Close Up, Get Cont _ddr,;End Pass,nit ContMaan,Prlnt StringSetjUp.
Crlf: ; s ends carrIage return,line-feed to cons

;** pars in - none
; Para out - none

MO ALcfr ;ca;riage return char
call Putchar ;w;ite it to console
mow AL,lf ;line feed char
call Putchar ;write it to console
ret

END PASS subroutine

;called from: 3ain.
End-Pass: ;** performs end of pass housekeeping

-; parm in - none
;** para out - ncne, effects global vars

;conwert pass # to Ascii and print after pass message
Mow ALpass nc ;pass number to accum
call Hex To IsOi ;convert to Ascii
Mow BX,5ff-et ms dpass;addr of pass # in msg
mow bite ptr (BX] DR load high byte o .sg
inc B! ;Lump to next position in msg
nov byte ptr BX],DL ;load low byte to msg
noy D ,of set msg dcnepass ;addr of done pass asg
call ir.nt String ;write asg to console
call Crlf - kip a alne

;inc.pass number and reset all vazlables for new pass
Inc pass_no ;add one to pass number
mow newpass flag ;set new-pass fla on
nov curr bub no, 6 ;reset to bubble aevice 0
moW curr sectcr no 0 *reset sector number to 0
nov errpEr,offs'it rriog ;reset addr of error log
ret

1149

ERR OUT subroutine

;cal3ed from: Check Errors.
Err Out: ; issue an errcr lessage to the console

parm in - EX addr in cuff cf byte error
* par. out - none, effects global vars

push bX I push BX ;save addr of error twice
cap newpass flag,1 ;is this a new pass ?

nz Prt err- ;if not print error nov
mov newpass flag,O ;turn fla off
mov DX,offst msg header ;ioN addr of header
call Print String ;print the header

;put zeros into all error ccunts in the log
mow CX,1NB maxdevs 1 ;count for # of dev to loop

M ov BXof1set errlog ;addr of error logcl-r !og:
- o0 b te ptr [BX],O ;clear log entry error count
inc BI ;bumppointer to next entry

_.loop clr_log ;dec C and loop if not zero

mov, AL,curr bub-no ;bub dev $ to accum
call Hex To Xscii ;convert to Ascii
noy *sg-e aew,DH ;move in high byte to msg

. mow msge-ev1l,CL ;move in low byte to *sg
;load page numBer of error

mov AL,b te pt;rcurrpage no+l;hi byte cf page#
call Hex To Ascii ;convert to Ascii
mov msg-eTage,EH ;high byte to asq dg 1)
mow msg e page+1,DL ;low byte to .ssgI(ie 1)
mow AL,'5e ptr cur.-page no ;lo byte cf page#
call Hex To Ascii 4ccnwert to Asci
mow msq-e pagee2,DH ;high byte to *s dig 2)
Moy msq-e-page 3,DL low e to ms ig 2

;compute and lead byte ofiset overror in page
pop BX ;restore addr err byte offset
addr buff equ offset test buffer ;fcr ccmputation
sub -BX,addr buff ;compute err offset in buff
mow AL,BL - ;offset to AL for conversion
call Hex To Ascii ;convert to Ascii
mow msg-e EyteDH ;move in high byte to Msg
mow msg-e-byt3+ 1,DL ;move in low byte to asg

;load pattern That was written and what was read back
mow &L,pattern ;load pattern just written
call HexTo ASCii ;convext to Ascii
moV msg-e wrote,EH ;move in high byte to msg
mow msg-evrote*,DL ;move in low byte to msg
pop BX ;restore addr o err offset
mow AL,(BX] ;load byte just read back
call Hex To Asci: ;convert to Ascii
aoy msg-e "ead,DH ;ucwe in high byte to msg
mow msg-e read 1,DL ;move in low byte tO msg
mow DX, -o usej asg er r ;addr of total error msg

4 call Print String _ ;print the error message

ERROR SUMIMARY subroutine
;called from: Main.

ErrcrSummary: ;,* outputs summary of errors cn each device
pars in - none
' arm out - none

mov !X,oifset msg summary ;addr of summary msg
call Print String- ;write m~g to ;onsole

;step thru errlcg-convert to Ascil - print err counts
2ow CX,.Bmaxdevs.1 ;ccunt for loop - # of devs

150

MOT BX ofset errlog ;addr of error logmov DI-offset g.counts ;addr of msg 2um counts
Frt._loop:tOT AL X X *qet count iron errcr logpNsh BX.pUSl CXIpush OI;save addrcognter,index

call Hex To Ascii ;convert to Ascii
pop DI!-po CX! op BX ;rest index counter,addr
MoT byte ptr CDI],DH ;load high byie t. ssg
!nc DI ;Lump to next pos in asg
ov byte ptr (DI),DL ;load low byte to asg

inc .DI _ ;Lump to next Fos in ssg
moy bnyt:e ptr (DI],blank ;Ascii blank tg *aq
inc DI ;buup to next pos in asg
inc BX ;±ncrejent buff a4dr to next
loop prt loop ;aec CX and loop if not zero
MOT DX offset.asg ccunts ;addr of msq sum counts
call PrintString ;write asg to console
ret

GET CCNT ADDR subroutine

;called from: Main.
Get Cont Addr: ;** gets base segment address for the MBB-80

;- ccntrol ler from the user at t he console.
;* para in - none
** .arm out - ncne, updates MB contbase

MOT Dxtotfset asg getadar ;addr of et, cont asg
call Prilt String- ;write sag to console

;get base a Tdess keyed in by the user
moT CLBdos conbuf ;input console string funct
MoT BX offsit ccns buff ;area for cons input
MOT by e ptr(BX],c5nuf size ;tell Bdos size
MOw DXBX ;lold 2arm for Bdos call
call Bdos ;read from consolell Crlf .;skip a likne after input

;make sure only four digits Keyed in
MoT BX offset ccns buff+1 ;byte 1 tells how many
cap byte ptrBX],4- ;see if exactly four read
jne Error input . ;if nct 14 error

;make sure all fcur digits are valid hex
MoT BX,offset ccns buff+2 ;byte 2 starts data
Xor AXA- ;used for Ascii table index
MOy CX,4 ;number of digits to check

Check valid:
lov AL,[BX ;move digit tc.AL for chking
cmp AL,030i ;check to see if to low
jb Error input
cmp AL,04H ;check to see if too high
la Error input
cup AL O39H ;chk mid-invalid (3aH-40H)
Tbe Valid hex
cmp AL 041H
aea Valid hex

Imps Error-input ;it is in the middle - error
Valid hex:

iub AX,030H ;-30H to get table index
push BX ;savj bufer addr
mov BXAX *AX is inaex to table
Moy ALAscii table[BX] ;table look up
pop BX - ;restore buffer addr
moT byte ptr(BX],AL ;store hex back in buffer
!nc B; ;next digit
loop Cho-ck valid ;go checx it

;convert 4 valid hex diqits to a binary number in IX
Moy BXoffset consb-uff+2 lbyte 2 starts data
tOv AHX] - ;get first digit

151

mov CL,4 ;shift it to high nibble
shl AH,CL
inc BX increment index
or AH,[BX] ;?nd dig or'ed intc low nibb
inc BX ;increment index
*ov AL rBXj ;get third di it
mov CL, ;shift it to igh nibble
thl AL,CL
inc X ;inczement index
or ALI[BX1 -4th dig orled into low nibb

;store con.roller base adaress that was built in AX
Nov NB contbase AX
laps Ge. cant rei ;go return

;error in iffput,-issue message, retry
Error input:

iov DX offset msg errinp ;addr of error message
call Print String ;write msg to conscle
call Crlf - ;skip a line
imps Get_ContAddr ;go ask again

Get cont ret:
ret-

GET TEST BUFFER subroutine

;called frc: Main.
GetTestBuffer:;** increments pattern and loads test buffer

* pirm in - none
* par. out - none, effects global vars

inc pattern ;add one (1) to pattern
2oy CL, utern ;pattern to accum for manipul
Mov CX ,,B buflen . 0loop counter - size of buf
ov BX ofTset test buffer ;set index into buffer
mov [B*],AL ; load a byte
inc X ;bump index
loop Fill ;dec CX, loop if not zero
=et

HEX TO ASCII subroutine *

;called from: End PassErr Out ErrorSumiary.
Hex-To Ascii: ;** converts a her number to its hex Ascii

par, in AL has hex byte to ccnvert
pars cut DX contains hi&lo Ascii bytes

;convert tow nibble cf AL to Ascii hei di gt
mow AH,AL ;sawe hex * for 91 nibble
and ALOfH ;clear hiqh 4 bits lo nibble
add AL,90H ;handles -9 (90H+4OH=130H)
daa ;deciaal adjust
adc AL,4OH ;handle a-fH (41H-46H Ascii)
laa ;decimal adjust
.oy DL, L ;low nibble Ascii fer ret

;convert high nibble cf AL to Ascii hex digit
.mov ALAH ;mcre to AL for daa ops
2ov CLL ;set count for shr 4
shr ALCL ;shift hi nibble to lo nibble
add AL,90H ;handles 0-9 (90H 40H=130H)
daa ;deciual adjust
adc AL,LOH ;handle a-fH (t4 H-46H Ascii)
daa ;decimal adjust
3ov DH,AL ;high nibble Ascii for ret
ret

152

2[

INIT CONT Surutn

;called from: Main.
InitoConv: ;X, initsbhe dBE controller and each device

NOV-ESA ;oad in - d ne. p-'I'+" ar l out - n gne
iov 6Z fset isg_ itbqgin ;begin init.ISg addr
call PrintString- .;Mte .aSK oconsole

;initialize page size and liner oof size
moy IX, B contbase ;address oE controller base
toy ES, I- ;load ES to. address bqbble
Nov AX,38 maxpages ;pages per bubble device
mow ES:P loopsize .0,AL ;loopsize low byte
aov ES:P-loopsize-hi,AH ;loopsize hi byte
mov ES:P pagesize -re F, 1B pagesize;page size reg

;issue reset aommand to tie c~ntroller
Iov AL,MB reset cad ;rset mask byte
nov ES:P Lmnd rq,AL ;Issue reset command

;initialize elch bfbtle device
Nov CX,MB maxdevs,1 ;count for loop-# of devices
moT AI,O - ;device # to initialize!cr,.each:
Nov ES:P select bubdev,AL ;select each device
mov ES:P-cund reg,NB init cad ;init this device
push AX!pIsh C!T;ush IS ;save bubble 6 ccunterES
call Wai wait for controller to work
pop ES! pop CX! pop IX ;restore ES,cntr,bubble #
inc AL ;next device number
loop For-each ;dec C1, loop if not zero

;issue s qs Indicating nit done and test in progress
mov DX offset msg initend ;init done message addr
call PrInt Sting- ;write asg to console
call Crlf -;skip an extra line
Nov DXroffset msg testing ;testing message addr
call Print String ;wri e asg to cle
ret

LOG ERROR subroutine *
*******************R******* *********************************

;called from: Check Errors.
LcqError: ;** lcg the error for use in pass printout

;* para in - ncne
para out - ncnea effects global vars

mov Al errptr ;ad- of error log to BX
inc by~e ptr (BX] ;add cne to error count

nz done log ;if nct overflow all done
d byte-pr (BX] ;inc tco big, reAuce to max

dcnelog:
ret

PRINT STRING subroutine *

;called from: Close Ut, End Pass Err Out,
Error Summary, Get Cont Adr, fnit-ont,

; main -Set U
Print String: ;** prints lu~fer addressed until 'S' hit

- ;~ %Para in - address of buffer in DX
; arm cut ncne

Mov C L,Bdos pstring ;function * for Bdcs call
call Bdos ;ca 1 Bdos and print
call Crlf ;skip a line
ret

153

PUTCHAR subroutine *

;called from: Crlf.
Putchar: ;,* write$ character from AL to console

;*, par. in - output char in AL
-** pars out - none

MOv IL,B os conout ; function# for Bdos call
MOT DL,AL ;load char to Edos reg
call Bdos ;call Bdos and send
ret

READ SECTOB subroutine *

;called from: Main.
Read-Sector: ;** reads sector into test buffer from bubble

;* par. in - none
-** par. out - none, effects global vars

cal .ompute Paqeno ;compute 1st page# of sector
;establish a dressability to ccntroller

mov AX,MB contbase ;address of controller base
MOT gSbY- ;load ES to address bubble

;set multipage mode
nov ES: cmnd re2,M1multi paqe ;multipage mode

;load first page nmr fr traDf±r
nov AZ,curr page no *current page number testing
nov ES:P pa4kse1-lo,LL ;page select 1o byte
Mov ES:P-pageselhi, A ;page select hi byte

;set number of pages !o transfer= pages/sector
ov ES:P pagecnt lo,MB p ages sec ;# pages to xfer

nov ES:P-pagecnt-hi,0 Ti yfe of # is zero
;set up buffer to receive data

mov CX,B buflen ;count for loop-buffer size
nov BX offset test buffer ;set index into buffer

;select bub le device ald issue read command
nov &L,curr bub no ;current bubble # testing
mov ES:P select bubdevAL ;select current dev #
*mov ES:P-cmnd rig,NB read cfd ;read from FIFO

;wait for intgrrupT from contraller
Readint:

IF vectored int
cp interfuptflag,0 ;will be set t.int handler
z Read int ;if zero, keep checking
nov interrupt flag,O ;reset interrupt flag

ENDIF ;vectored-int

IF not vectored int
nov AL,ES:P iof flaq ;get 4nterrupt status
and AL MB ctkint malk ; as interru t teen set?
Az Read iv rt ;if not, keep checkingEN I F ;n-dt vectored int

;read from &BB FIFO tulfer into test buffer
1 nOv AL,ES:P rdata reg ;read a byte into accum

MOT BX],AL- ;load accum into buffer
inc X ;increment index
loop Read int ;dec CX loop if not zero
push ES ;save in
call wait ;wait for controller to stop
pop ES ;;estgre E4
ov ES:Pcmndreg,B_ntninhibit ;clear cont int
ret

154

SET UP subroutine *

;cal.ed from: Main.
Set Up: ;*inits.variables and issues signon msg

; part in - none
** parm out none effects global vars

call Crlf ;sk p an extra ftne
call Crl ffs . ;skip an extra line
nov DX,offset msg signor ;signon message address
call Print String- ;write asg Vo console
no DX ofTset 0sg versi9n ;version usg aadress
call Print String ;:rite msg to console
call Crlf - ;skip an extra line

;initialize all variables and flags
mov newpass flag 1 ;set flag indicating new pass
2ov currt bu Vno,6 ;current buDble # tc 0
nov curr-sec or no,O ;current sector # to 0
mov pattern,i - ;initial test pattern is 1
nov pass no,1 ;nitia ?ass i is 1
Mov errpr,of-set errc ada of error log

;load 8B in errupt vector a dress in CP/M low memory
push DS ;save this pgm's DS
mov Al,O ;lowest memory
nov DSAX maake it addressable
mov MB int seqment,CA ;int vector CS is pgm CS
n ov MB-int-fset,cffset Trap Handlertrap handr
pop DS- - ;restore this pqm a DS

;se up 8259a VIC tc recognize interrupt from MBB-80
mov &L,MB int mask ;mask to enable MB interrupt
out PICpl;AL ;send mask to 8259a - OWC1
sti
rat

TRAP HANDLER subroutine*

;called from: Vectozed to from CP/N interrupt
Trap-Handler: *sets the inteirupt flag seaaphcre to one

;*pars in -- ncneparm out none
nov interrupt flag,l ;set the interrupt flag on
iret ;return from interrupt

W AIT subroutine *

;called from: Init Cont, Read Sectcr,
Writi Sector.

Wait: "** checks status of MBB controller for busy
;* keeps checking (wait) until not busy
;* parm in - none***parm out - none

nov iXiB contbase ;address of controller base
nov ESAX- ;load ES to address bubble

See-zero:
mov ALES:P sta:us reg ;get status register
and AL,NB busycheak ;is it all zeros ?
jz See zero ;if so,keep checking for one

Ccntbusy:
nov ALES:P status :eg ;get status re isterand ALMB bisycheck see if busy, and to mask
jaz Contlusy ;if busy, check again
:et

155

WRITE SECTCR subroutine *

;called from: Main.
Write Sector: wl writes sector frc test buffer to bubble

* p arm in - none
P arm out - ncne

call ompute Paqeno ;compute Ist page# of sector
;establish addrelsability to ccntroiler

mov AX,HB contbase ;address oZ controller base
mov ES,AX- ;load ES to address bubble;set aultipaqe mode;seov ES:P cnd regffB multi page ;multipage mode

;load first pige n mer fr transfer
mov AX,curr page no ;current page number testing
mov ES:P pa4esel-lo,kL ;page seect 1o byte
mov ES:P-pagesel-hi,AH ;fage select hi byte

;set number ol pages To trans er= pages/sector
mov ES:P pagecnt lq,B pges sec ; p ages to xfer
mov ES:P-pagecnt-hn,O 79byte of * Is zero

;set up buffer to sena data
mov CXMB buflen-1 ;ccunt for loop-buffer size
mav BX ofTset test buffer ;set index into buffer

;select bubble device and issue write cud
mow IL,curr bub no ;current bubble # testing
mow ES:P select-ubdevAL -select current dew #
3ov AL,Cf AX - load first byte
mov ES:]P wata reg,AL ;write a byte to EFO buff
inc BX ;inqrement index
mow E$:P cmnd rqg,MB Frite cud ;write FIFO buff

;wait for intirrup! from ZontrcIler
Uriteint:

IF vectored int
cup in-errpt flag,O ;will be set by int.handler
jz Write int ;if zero, keep checking
mov interfupt flagO ;reset interrupt flag

ENDIF ;vectored-int

IF not vectored int
mov AL,ES:P inT flag ;get interrupt status
and A AB cfkintalk • has interrupt been set?
Iz Vrite tnt ;if not, keep checking

ENDIF ;not vectored_int
;write into NBB FIFO tuffer from test buffer

mow AL,[BX] ;byte from buffer to accum
mov ES:P wdata reg,AL ;write a byte to FIFO buff
inc BX- ;increment index
loo Write int ;dec CX loop if act zero
pus9 ES ;save H .in z
call Wait ;wait for controller to stop
pop ES ;restore ES
mow ES:P cmnd reg,MB intinhibit ;clear cont int• _ et ..

DATA SEGIENT AREA *

DSEG
org O100H ;leave room for base page

ariable---------------------------

iscii-table db OO5,91H,O2HO3HUO4H,05.O6H, 07H. 09H,O9Hrb 7 ;.'Or Asc'il 3aHl to 40A -invalid
db OaH,ObH,OcH,OdH,OeH,OfH

156

cons buff rb conbuf size ;area or cons st inq iput
curr-bub no rb - ;bubble device # 0-1 t g
curr-page no rv 1 ja: e # testin
curr-sector no rb 1 iaugle lo4 sector # testing
err! q rb nB maxdevsl -table or dev errgr count
errrtr rv 1 ;polnter to erriog - index
interrut.flag db 0 ;int flag - semapnor:,fron EBB
MB contbae dw O000H ;base s egaentadd: for BBB-80
ne, passflag rb 1 ;flag fag indicating new pass
pass no rb 1 ; oass number
pattern rb I ;test pattern
estbuffer rb MB buflen ;buffer to hold test data

--- string data area for console messages

isqccunts rb (JB..,axdevs ,)*3)
db

sgq donebub db ' Done vith a bubble.$'
.sq-donepass db 'Done with PASS '
esqadpass rb 2

db 'S'
msq endtest db :*User Terminates testing...'

db 'returning to CP/E!$'
usq err db I I

usg_e_dev rb 2
db '

ssg_e_page rb 4
db I

usq_e_byte rb 2
db '

esq_e_wrote rb 2
db '

asg_e_read rb 2
db 'S'

asqerrinp db '**EEROR: nct exactly 4 digits entered,'
db ' or invalid hex digits!l$"

2sqgetaddr db cr,lf,'Key in 4 diglt seqment base addr'
1b 'ess ior ;BB-80 controllr.' crlf
db 'Must te in hex (4 digits, then CE only)'
db ' => $'

msg header db 'Bubble page yte Wrote ReadS'
msq-initbeqin db crlf,'Initializ ng the contrcller...S'
msg-initend db 'Controller is ini ialized.$'
msq_signon db I

db '** NBE-80 CP/M-86 DIAGNOSTIC TEST **$'
msq summary db 'Total errcrs for each device (0-7):S'
.sgtesting db 'Testing...Hit any char (& CR1)

db 'to stcp after this pass.$'
msq version db I

db 'Multi-Page Mode Version 1.0',cr,lf
IF vectoredoint
db :
db ' Vectored InterruptsS'
ENDIF ;vectored_$nt
IF nct vectcred int
db
db ' Pclled Interrupts$'
ENDIF ;not vectored int
db 0 ;GENCED to fill last address

"*~* ~*****$****~ end of variables e

ESEG

157

"

IBB-80 CONTROLLER AND PORTS

P;aqesel 19 rb 1 ;ls byti for page select, (0)
P-Gaqgesel-a rb 1 s;as 2 bits for page select, (1)
P-cand req rb 1 ;command register, (2)P-rdati!:eg rb 1 ;red ata egister. (3)P-vdata req rb 1 ;write data register
P-statu§ reg rb 1 ;stats register, (5)_-Gqecn 19 b ;ls byte fr page counter, (6)
P aqecnt-hi rb 1 ;as 2 bits for or pcnter, (7)
P- ccpszi lo rb 1 ;ls byte for minor icop sz. (8)
P:copsize-hi rb 1 ;as 2 bits for min ico sz (91

1rw 1 ;internal use(page 0 BP_aesizerueg rb 1 ;Jage size register i ()
rw T Iuse only (DZ

P select bubdev rb 1 ;two uses: sel bubb~le dev (F
P-int fl- v qu p select bubdev t itrrupt flag Fend of Co~trollef and Fort definitions **~*

DU;MY DATA SECTION

DSEG 0 ;absolute low memory
orq 0 ;start CV/l interrupt vectors

rv 2*(MB.... ;ad to int type for MBB
3B int offset rw 1 ;&9dr cf int vector cffset
M Bint:segment rw 1 ;addr of int vector segment

End of Program DIAG86H *

END

158

IJ

PROGRAM LISTING OF B80FRT.A86

; EILENAMES: Pascal = MB.HE8OFMT.TEXT
CP/K = MB80FM.CMD

; 8086 FORMAT PROGRAM FOB PC/M MBB-80 BUBBLE MENCRIES

• CCNFIGURATION:
HOST - Intel 86/12A SEC 20 address lines, MDS *Istem,

Data bus on 86/12A converting to low 8 bis
* all high.

MBB - Interrupts disabled bj disconnecting the inter-
rupt jumper on the MB board. Multi-page node.

T ehis prorau writesda $ormattirxg code (Oe5H) into every

M ~Inhe Pbubble devices. This code is for standardI IM compatible disks.

; The MBB-90 controller base address is read into variable
'MB cgntbase'. MBB-eO address select pins must vcrrespond
to This address. This prcgram uses mehory mapped I/O

; thrcugh the base address.

Jeffrey eufed and Michael icklin CS-03 Thesis *

B Edos functicn numbers for calls *
i4cs conbuf equ 10 ;console string input function #
Bdcs-conout equ 2 ;console output char function C
Bdcs-pstring equ 9 ;print string until '' function #
Bdcs-reset equ 0 ;CP/M-86 reset to CCP function #

NEE characteristics
iB buflen equ 144 ;kuffer length for sector
.B-maxdevs equ 7 ;bubble devices are #0-#7
MB-maxpages equ 641 ;# of pages on each bubble device
MB-maxsectors equ 80 ;# of og sectors on each bub dev
MB-pages sec equ 8 ;# of pa es.per logic4l sector
, E-BaqesTze eqli 18 ;bubble device page size
MB-skew equ 12 ;skew for page translaticn

;* NBE command masks and status masks *B busy check equ 00100000! ;qo~t busy? status check (20H)
ME-ini -cmd equ 00000001B ;init the controller (010
MB-int inhibit equ 10000000! ;int inhibit/reset mask (80H)
ME-chkInt, mask equ 10000000B ;mask testing if int set 80
M auulti page equ 00010000E ;multi-page mode command 10H
MB-read md equ 00010010E ;multi-Page read command 12H)
IB-rese! cd equ 01000000B ;reset he controller (40)
MB-rite:cmd equ 000101002 ;multi-page write command (14H)

Mt Eiscellanecus equates
ccnbuf-size equ 80 ;size of console input tuffer
cr -equ OdH ;Ascii cartiage return ccnt char
format_ pattern equ ue5H ;format pattern for every byteequ OaH ;Ascii line feed control char

159

.

%AIN PROGRAM - EIVER *

CSEG

iBeOFPT: call Set Up ;do initialization
cal" Get-Ccnt Addr ;get address of MBB-80 base
cal- Enit Con! ;init the cont and devices

Pcrmatjloop:
calI Write Sector ;write a secto; to bubble

;advance to nZxt sector in device see if last sector
inc curr sector no -increment current sector #
cmp curr-sector-no,i imaxsectors ;last sector ?
jnz For2t locp ;Tf not format next sector

;was last sector advance to next bub dev on board
nov DXoffsed asg donedev ;addr of done dev asg
call Print String ;write msg to console
cup curr Dub no,MB axdevs ;last bubble on boqrd?
1z Done foriat -if sc, done with formatting

;prepare to format next lubble' device
inc curr bub no ;if nct, increment device #
mov curr-secTor no,O ;set sector # back to zero
m For't_loop- ;gc format next device

Bcne-forma :
call Close Up ;do end of run housekeeping
nov CL,Bdos res-et ;function # for Nocs ca 1
ov DL,O - ;parameter to re ease memory

call Bdos ;call Bdos to terminate prog
i.* **,**, ****** eid of Main Program .

;* DBOOS C CP/M-86 subroutine

;called frog: Get Cont Addr, Main,
* erifft Strfing, Putchar.

Bdcs: ;** entry tc Bdos vta software interrupt 224
par. in -caller loads regs as per req
par. out as supplied by Bdos returns

int 124 ;808 software interrupt
ret

CLOSE UP subroutine *

;called from: gain.
Close-up: ;** issues goodbye

pars in -ncne
parm out - none

;issue goodbye message
call Crlf skip extra line
nov DX offset msgen ormat ;addr done format asg
call Pr-ntString ;write asg to conscle
rSt

160

4I

COMPUTE PAGEIO subroutine *

;called from: Vrite Sector.
Coupute-Paqeno:;** computes Ist pale # for a given sector

-; pars in -none, works on currsector no
parm out aanet es curr-page no

xor Lx,ax ;se to zero - -
cup L,curr sec*-cr no *s it sector 0 ?

_z Store page - sc, no translation
or CXCX ;cJear CX for counter

mov CL,curr sector_nc ;cnrr for translate loop
Idd skew:

add AX,MB skew ;# of pages between sectors
clc ;clear carry
sbo AX, Mhmaxpages ;uod tq # of.pages
jae Dec sector ;jump if positive (CFPO)
add AI,3B_uaxpages ;vent neg, add back i pages

Lec-sector:
loop kdd skew ;dec sector #, add skew again

Strepage:
mov currpageno,AX ;store page number
r4.t

CRLF subrcutine *

;called fro.: Clcse Up, Get Cont Addr,
Int Coat, Hiin, Pri5t StEing Set Up.Crlf: ;*v * snsczaertura,linlg feed to coils

par. in acnne
L pars out - none

mcv ALcr ;carriage return char
call Pudchar ;write it to console
3o AL if ;line feed char
call 2u4char ;write it to console
r et

GET CONT ADD! subroutine ,
;called from: Main.

GetContlIddr: ;** gets base segment address for the MBB-80
controller from the user at the console.parm in none

** parm out - none updates dB contbase
mow Dt,oifset nsg getadar ;addr of let cont usg
call Print String ;write nsg to console

;get base address keyed in by the user
mov CL,Bdcs conbuf ;input console string funct
mow BX offsit cons buff ;area for cons input
mov byte ptr [BX],acnbuf size ;tell Bdos size
movI DXBX ;load para for Bdos call
call Bdos ;read trom console
call Crlf ;skip a line after input

;make sure only four d42 its ed in
ov .BX,o tset cons uf f1 t byte 1 tells how many
cmp byte ptr[BX],4- ;see if exactly fcur read
Jae Error input ;t nc.i t , error

;make sure all four dgits are valid hex
3Iv 8X,offset ccns buff+2 ;byte 2 starts data
xor AX,AX ;used for Ascii tatle index
may CX,4 ;number of digits to check

Check valid:
moy AL, BU ;Move digit to kL for chking
cap AL,U0 ;check to see if tco low

161

lb Error input
cap AL,O4IH ;check to see if too high
Ia Error input
cap IL 931H ;chk aid-invalid (3aH-40H)
ibe Valid hex
cap AL '4-TH
J ae Vaiid hex
aps Error-input ;it is in the middle - error

Valid hex:
gub AXO30H ;-30H to jet table index
push BX ;save buf fer addr
nov BX AX *AX is index to table
nov AL:Ascii table(BX] ;table look up
pop BX ;restore buffer addr
nov b te ptr(BX],AL ;store hex back in buffer
inc BX ;next digit
loop Check valid -go check it

;convert 4 valid hex diqits to a binary number in AX
nov BX,offset cons uff+2 ibyte 2 starts data
nov A ,[BX] ;get ii;st digt
nov CL, ;shift it to nigh nibble.hl AH,CLinc X ;increment index

9r AH,BX] ;a2nd dig or'ed into low nibb
inc BX ;increment index
mov CL,[,x] ;get third dift

1ov CL ;shift it to nigh nibbleshl AL"CLinc BX ;increment index

or AL [BX] *ith dig orled into low nibb
;store controller base ad ress that was built in AX

nov MB con'base kX
Jmps Gef cont re ;go return

;error in ifput,-issue message, retry
Error input:

iov DX,offset msg errinp iaddr of error message
call Print String ;wri e msg to console
call Crlf - ;skip a line
laps Get Cont hddr ;go ask again

Get-con ret:-
rat-

INIT CONT subroutine

;called from: Main.
InitCont: '** inits the MED controller and each device

;* para in - none
; parm out - none

;initialize page size and mi cr loop size
mov AX, B contbase ;a dress o£ controller base
nov ES,&X- ;load ES to address bubble
mov AX,MB maxpt es ;pages per bubble device
nov ES:P loop ; e bo,AL ;loopsize low byte
mov ES:P-boopsize-hi,AH ;loopsize hi by 9
"ov ES:P-pagesize-re , B pagesize;page size reg

;issue reset Uommand to the ccnhroller
nov ALMB reset cmd ;reset mask byte
nov ES:P amnd re q,AL ;issue reset command

;initialize elch bibtle device
mov CX,MB maxdevs+1 ;count for loop-# of devices
nov AL,O ;device # to initialize

Por-each:
nov ES:P select bubdev,AL ;select each device
mov ES:P-cand rig,MB init cud ;init this device
pUsh &X.ilsh Cipush 7S ;sive bubble * ccunter,ES
call Wait ;wait for controller to wor

162

pop ES! pop CX! pop AX ;restoi;e ES,cgtr,bubble #
inc AL ;next device Lum er
loop For each ;dec CX, loop if nct zero

;issue msgs Indicating formatting in proqress
call Crlf ;ski p an extra line
mov DXoffset msg formalting ;formattinj msg addr
call PrlntString ;write msg to consce
ret

PRINT STRING subroutine

;called from: Close Up, Get Cont &ddr,; ~nit Cont, Maln, tUo
Print String: ; prints tuffer iddressed until '$ hit

;* par. in - address of buffer in DX
** parm out - none

mov L, dos pstring ;function # for Bdcs call
call Bdos ;call Bdos and print
call Crlf ;skip a line
ret

******************* ********************************.********;*: ' PUTCHAR subroutine

;called from: Crlf.
Putchar: ;,, writes character from AL to console

_* parm in -output char in IL
** garm cut - none

mov L,Bdos conout ;function# for Bdos call
ov DL,AL ;load char to Edos reg

call Bdos ;call Edos and send
ret

SET UP subroutine *

;called from: Main.
Set Up: ;** Snits variables and issues signcn asg

. parm in - none
;**fparm out - ncne, effects global vars

call Crlf ;skip an extra line
call Crlf .;skip an extra line
Mov DXoffset msg_signon ;signon message address
call Print String ;write msg to conscle
mov DXofTset msg version ;version asg address
call Print String ;vr.te msg to console
call Crlf ;skip an extra line

;initialize all variables and flags
mov curr bub noO ;current bubble * to 0
nov curr-secTcr-no,O ;current sectcr # to 0
rat

WAIT subroutine

;called from: Init Cont Write Sectcr.
wait: ;* checks status af MEL cont;oller for busy

;** keeps.checking (wait) until not busy
;** pars in - none
** p arm out - ncne

nov .X,a contbase ;address of controller base
nov ESAX- ;load ES to address bubble

163

'We

See zero:
mow AL,ES:P status reg ;get status register
and AL,MB bisy cbeek ;is it all zeros ?
Z See-zero ;if so,keep checking for one

Ccnt.bus Y:
mov ALES:P status reg ;get status reqister
and AL,MB bUsy che k ;see if busy,.and to mask
Jnz ContjBusy ;it busy, check again
ret

WRITE SECTCB subroutine

;called from: Main
WriteSector: ;** writes sector using format patt to MBB80

;* parm in - none
_ * parm out - none

call .Compute PagEno ;compute 1st page# cf sector
;establish addressability to controller

nov AX,MB contbase ;address of controller base
Mov ?S,AX- ;loa ES to address bubble

;set multmpate mope2 ov. ES.P cmnd regIMB 'amulti Ipage ;multipage mode
;load first pige nUmter f r tra sfer

mov AX,curr pag no *current page # formatting
nov ES:P pagesel loLL ;page select lo byte
nov ES:P-pagesel-hi H ;page select hi byte

;set number oT pages To trans er = pages/sector
mov ES:Ppagecnt lo,MBpagesfsec ;# pages to xfer
mov ES:P-pagecnt hi,0 ,hi by e of # is zero

;set up buffer to sena data
% ov CX MB buf;en-1 ;count for loop-buffer size

;select bub6le-device and issue write cmd
mov AL,curr bub no ;current bubbie # formatting
moy ES:P select-bubdev,AL ;select current dev #
Mov AL,format pttern ;loai format pattern
nov ES:P wdatS reg,AL ;write a byte to FIFO buff
mov ES:P-cmnd Yeg, B write cd ;write FIFO buff

;wait for intgrrupt from ZontrcIler
Write int:

mow AL,ES:P int flag ;get interrupt status
and A MB cnkin: mask ;.as interrupt beenset?
z Write Int -if not, keep checking

;wri .e into HBB FIFO buffer rcm format patern
mov AL,format pattern ;byte from a tern to AL
nov ES:P wdatz reg,AL ;write a byte to FIFO buff
3oop Writg Ant - ;dec CX loop if nct zero
push ES ;save E
call Wait ;wait for controller to stop
pop ES ;restore ESmoy ES:Pcmnd-reg,MB_int_inhibit ;clear cont int

DATA SEGMENT AREA

DSEG
org 0100H ;leave room for base page

------------- Variables- - -- *

iscii-table 4b 00H,01B,02H03H, 04H, 05H 06H 07H S,09H
rb 7 ;for Ascii 3aH to 40H - invalid
db OaH ObH,Oc,OdH, OeH, OfH

cons buff rb contuf size ;area for console input
curr-bub no rb 1 ;bubble device I0-7 formatting

164

currpaqeno rw 1 ;bubble page S formatting
curr sector no rb 1 ;tub logic sect # format tin
MB-cantbase- dw O000 ;base segment addr for MBB- 80

------string data area fcr console aessages--

'sq donedev db ' Done vwih a device.$'
msq-endformat db '*Formattinq complete...'

db 'returning to CP/!I$'
usq_errinp db '**EHROB: not exactly 4 digits entered,'

db : or invalid hex digitsl!$-
msq formatting db 'Formatting the devices...... .. S'
msg-getaddr db cr,lf 'Key in 4 digit segment base addr'

db 'ess icr 5DB-80 ccntroller.' cr,lf
db 'Must te in hex (4 digits, then CR only)'
db ' => S'

msgsignon db I
db M** MBE-80 CP/3-86 BUBBLE FORMATTER **S'

asgversion db I
db 'Multi-Page Mode Version 1.05'
db 0 ;GENCMD to fill last address

%.***,****,**-*,*, end of variables * * ******

ESEG

MBB-80 CONTROLLER AND PORTS *

Fagesel lo rb 1 ;ls byte for page select, (0)
P-paqesel-hi rb 1 ;us 2 bits for page select, (1)
P-cond reg rb 1 ;comad register, (2)
P-rdata req rb 1 ;read data register, (3)
P-wdata-reg rb 1 ;write data register ()
P-status rag rb I ;status register, (5f
P- agecnf 10 rb I ;ls byte for page ccunter, 6
P-raqecnt-hi rb 1 ;us 2 bits for page cnter, (7)
P-Icopsize lo rb I ;ls byte for minor lcop sz, 8
P-loopsize-hi rb 1 ;*s 2 bits for min loo sz.19

- rv 1 ;internal use(page pcst, (,B
P aqesize reg rb I ;fage size register, (C)

rv 1 ;TI use only, (D,E
P select bubdev rb 1 ;two uses: sel hubble dev (F)
P-int fl!q ejuCP select bubdev ; interrupt flag (F)
;=.**** end o Coftrollef and Port definitions **

End of Program MB8OPRT *

END

165

APIN2u LJ
PROGRAM LISTING Of ABBIOS.A86

;PILENAMES: Pascal = MB.BIOS.TEXT
CP/M = 3BBIOS.A86

9

title 'Customized Basic I/O System'

"* This Customized BICS adapts CP/M-86 to *
. the following hardware ccnfiguration: *

Processor: iSBC 86/12A
Disk Controller: Intel SBC 202 *
Bubble memory: MBB-80 with memcry-mapped I/0

• * Memory model: 8080

.;* Programmers: 3.k. Neufeld, M.S. Hicklin *
*~ Revisions : *

~S

***************** EQUGATES *************
;* *

- -------------------- iscellaneous equates------------

addr hiuh ram equ OfOOH ;high para user available RAM
bdos-in _Tpe equ 224 ;reserved BDOS interruptcr - -equ OdH ;Asoil carriage return
disk type equ 01H ;type for standard floppy disk
true equ -1 ;fcr conditional assembly
false equ not true ;for conditional assembly
if equ OaH ;Ascii line feed
max retries equ 10 ;fcr disk I/O, # of tries
abbOO type equ 025 ;tjype for MBB-80 bubtle
sectorsize equ 128 ;CP/M lcgical disk sector size

---------------- - - - - - - - - - -

- -------------- 8251 USART console ports-----------------

CONP data equ Od88 ;18251 data port
* CONP-status equ OdaB ;18251 status port

--- Disk Controller ccmmand bytes and masks (iSBC 202) ---

DK chkint mask equ 004H ;mask to check fo; DK interupt
DK-home cld equ 003H ;mcve to home position command
DK-read-cmd equ 004H ;re~d command
CK-writ4 cad equ 006H ;write command

-- -------------------------------- -

166

--------- INTEL iSBC 202 Disk Contrcller Ports-----------
CKP base equ 078H ;ctrler's base in CP/M-84

EKP-.esult type equ DKP base 1 ;operat.on result type
CKP-result-byte equ DKP-base+3 ;o eration result byte
DKP-reset equ DKP-tase.7 ;dsk reset
DKP-$tatus equ DKP-base ;disk status
UKP-opb 19w evu DKP_-ase 2 ; u addr byte of ibb
CKPiopbhh e u DKP-ase+2 log addr byte of opb

----------agnetic bubble charac-,eristics (MBB-80)

ME buflen equ 144 ;buffer length fcr BEE sector
MB-maxdevs equ 7 ;bubble devices are #0-#7
MB-maxpaqes equ 641 ;# of pages on each device
MB-maxsectors equ 60 ;# of lcg. sectors 9n each dev
MB-pages sec equ 8 ; of pa es per logical sector
Ba-pagestze equ 18 ;bubble 2evice page size
E-skev equ 12 ;skew factor ror page xlation

*-------------- ----------------

---- Magnetic bubble ccmmand bytes and masks (MBB-80)

HB chkbusy cad equ 020 ;is controller busy s atus
MB-chkint iask equ 080H ;mask to chk for fBB interupt
BEinhnt-cmd equ 080H ;interrupt inhibit/reset mask
HE-init cad equ 01H ;init alize th* contrcller
MB-mpaqL cud equ 010H ;multi-page mode operatlon cad
fB-read cud equ 012H ;multi-page read command
MB-resef cad edu 040H1 ;reset the controller
MB:write-cmd e~u 0141 ;multi-page write command

----------------- tarting addresses---------------------

; Loader bios is true if assembling the
LCADER-BIOS, otherwise EIOS is for the
CPH.SYS file. This secticn will assifn the
appropriate equates to the starting dddresses.

lcader-bios equ false ;** controls conditional asm

IF not loader bios
addr bdos equ OBOH ;BDOS entry Ioint in CCP
addr-bios equ 2500H ;start, of BIOS after CCP
addr-ccp equ 0000f ;base of CC? is 0

.EID F ;net loader bics

IF loader bios
addr bdos aqu-0406H ;stripped BDOS entry in CCP
addr-bios egu 1200H ;s'a. of LDBIOS after CCP
addr-ccp equ 0023 ;base of CPMLO&DER

-EN3I ;loa der-bios

;***,, *****,****,~*, End of Equates *,****,**= ,**,***, *'

167

;***- ** m********** START CF CODE **s*****.*s*********
CSEG
orq addrccpCE:
org addrbios

;------- BIOS Jump Vector for Individual Routines----------:l1
mp INIT ;entqr from ECOT RON or LCADER
up WBOOT ;arrive here trom BDOS call 0
up CONST ;return console keyboard status
mp CONIN ;return console keyboard char
mp CONOUT ;write char to console device
mp LISTOUT ;write character to list device
Mp PUNCH ;write character to punch device
up READER ;return char from reader device
Mp HOME ;mcve to trk 00 on cur sel drive
mp SELDSK ;select disk for next rd/write
mp SETTRK ;set track fcr next rd/write
up SETSEC ;set sector for next rd/write
mp SETDMA ;set offset for user buff (DNA)
up READ ;read a 128 byte sector
up WRITE ;write a 128 Zyte sector
up LISTST ;return list slatus
mp SECTRAN ;xlate logical->physical sector
mp SETDMAB ;set segm base for buff DMA)Mp GETSEGT ;return ofrset of Meu Desc Table
mp GETIOBF ;return I/O map byte (mobyte)
mp SETIOBF ;set I/O map byte (iobyte

--9

;INITsJumvector destination **********

;called from: bios Jump vector.
INT* ;* Enter from BCOT RiO or LOADER

par. in - none
par. out - none

;print signon message and initialize hardware
mo AX,CS ;we entered with a JNPF so use
mov SSAX ;CS: as the initial value of SS:,
moT DS, AX ;D:,
mow ES AX ;and ?S:

;use local stack during initialization
Mov SP,offse+ stack base
cld ;auo-increment on

;setup all interruo4 v ectors in low memory tc
;address the soft/hardware traps.

IF not loader bios
call Init BiosInt jset-ap interrupts for CPM.SYS

ENDI? ;nc. loader-bios

IF loader-bios
call Init Ldr Int ;set up interrupts for LOADER

ENDI? - ;lcader-bios
;perform special in4tializations for CP/M-86

call Load 3ma Idar ;load dma addz for devices
call Cevi.e_Iti-s ;init all devices

168

; (calls for additional initialization go here)
mov BXQffset nsg s gnon
call Pr int sg ; rint signon message
mov CLoO ;Iefault to dr A: on coldstart
jap CCP ;Jump to cold start entry of CCP

;-******** 'BOOT' Jumj vector destination * 1S.*

;called from: bios jump vector.
WBCCT: Arrive ere from B OS call number 0

Spar. in - none
par. out - none

jmp CCk+6 ;entry to CCP at command level

i CPfH Character IOInterface Routines
Console USiT(I8251A) on 8612 at ports D8/DA

;*********** 'CONST' jump vector destination ***********

;called from: bios jump vector.
CONST: ;* returns console keyboard status

,* parm in - none
Farm cut - returns status in AL

C t ;g 00=not ready, Off=ready
in AL status ;get status
and AL, 2 ;see if ready-bit 1-is set
jz Const ret ;if not it is zero and not ready
or ALOffH ;is ready, return non-zero

Const ret:
Eet

;*:::::*:**: 'CONIN' 4 umu vector destination ***********

;called from: bics jump vectcr.
CONIN: ;*"returns console keyboard character

;*par, in - none
OS parm out - returns character in &L

call CON * ;get console status
test AL AL ;is it zero (not ready)?
jz CONIf ;if zero, keep checking
in AL CONP data ;ready, so Vead Characler
an& AL,07f ;remove parity bit
ret

169

;***********'ICOVOUT# Jun; vector destination ********

;called frog: bics jump vector.
CONOUT: ; w vrite character to console keyboa;d.

;** par. in - character to be output in CL
**e pare out- none

in AL COO- status ;get console status
jnd I 1 - ;se if readj-b 0-is set16 ONUT ifze~c, no% ready-keej checking
,ov AL CL ;lcad input pars to AL or out
out C0&P-data,AL ;output character to console
ret

9;*..**,,***,,LISTOUTO Jun; vector destination *,*,***,***

;called frca: bios jump vectcr..
LISTOUT: ;** write character to list device.

;~* pars in - none
;p par. cut - char to be output in CL

;not iuplemented
ret

;********** LISTSTO jump vector destination *****

;called from: bios lump vector.
LISTST: ;** returns the list status.

;** pars in - none
;** par. cut - list device status in AL

timplere~ted. 00-not ready, 0ffaready;notimlmne

ret

IPNC;Iugvector destination******
P; 'tI;calle4 from: bios jump vector.PUNCH: to the punch device.

, par. in - character to send in CL**; pars cut - none
;not ip lemented

mo AL.OlaH ;return eof for now
ret

170

, R£kDpR ° ,us vector destination ****.******

;called from: tios lump sector.
REArEE: .* return characteff o reader device.

* pars in - none
•* pars cut chracter read in IL

sov AL,O1aH ;return eot for now
ret,

•* *******"*'GETIOBDP 4uF vector destination ********** **** ***,** *******mm* **i******m

;called from: tics jump vctcr.
GEIOB:;* return I/O map te (iobyte)

* pars in - none
Farm cut - returns iobyte in AL

Roy ALio~yte ;iobyte not implemented
ret

i* * **** * 'SETIOBF' Jum tvector destination *********

;called from: bios ju P vectcr.
S!'IOBF: ;* * set I/O map byte (iobyte)

par. in - iobyte to be set in CL
, * Farm cut - none _

Sov iobyte,CL ;iohyte not implementedret

Disk Input/Output Routines *
.: risk is i202 Contrcller with pcrts at 078H for 8 bytes*

;: i .,***t** SELDSK;*Iuap vector destination .i..-....
;called from: bios jump vector.

SELCSK: ;* select disk for next read/write
;** parm in - disk number to select in CL
* oaucut - address of first dph in BX

meT ;isk pn is a di sk parameter header.
mow disk,CL ;save disk numbermoy BX,0 . ;ready, for error return
cup CL nun 1 02 disKs ;beyond max disks?
jn Seidsk:re..- ;return if sc
mov CH,0 - ;double(n)
mov BX,CX ;BX = n
mov CL,4 ;ready for *16, 16 bytes each dph

171

shi BXCL ;n = n * 16
nOv CX offset dpbase ;address of first dph
add BXCX ;dpbase + n * 16
push Bx save debase

;determine type of device this diSk number is
xor BX,BX ;clear BX of index
moT BL,disk iload disk number for index
mOv AL,device table(BXJ ;find type of device
nov device _pe,k. store the type returned

;Iake CP/M loglcal disk mapping to floppy cont or
;MBB-80 cont address depending on device type.

clp device -tgge,disk type ;is this a floppy? ._
ine Load _Nb U cont ±i note o MBB-80 con a dr
rac AL,R D loqial taLleLS ;get flopjy 4i-k #
mov DK i. k,AL ;Ntcre lopy contai I

Loa ms eSildsk ret ;gc returnLoadmb 80b cont.--
add BT,BL ;dcuble disk 0 for word index
mov AX,MB logical table[BX] ;get addr of cont
mov MB cotbase,AT ;store as current base addr

Seldskret:-
po BI ;restore dpbase for return

* 'HOMEjump vector destination *
;called from: bios Jump vector.

OM:;** move tc trk 0 on curr selected drive
;** parm in- none
;* Par. o ut - none

clp device type,disk type ;is this a floppy disk?
jne Mbb80 Eome ;Tf not, home bubble
mov DK io-com,DK hcme czd ;home the floppy disk
mov tr-ckO - -
call Dk ExecuteCad
Jmps Hoie_ret ;go return

Mbb80 home:
Ior CI CX ;clear CX, iarm - track=O
call SATTRK ;set trac Zor bubble = 0

Hce ret:
ret

•;********** 'SETTRK' jump vector destination **********
;called frcm: tics jump vector, HCME.

SE K:;** Set track for next read/wr Ite
. ;** parm in - track address in CX (CL),** para cut - none

nov trajkCL ;Store track number
qm dev ce tjpe#Aisk type ;is this a floppy disk?
e Settrk re o, just return

call bb8U TrackXlat ;bubble, so xlat track->bub#
Settrk ret:

r1t

172

I STSC° jump vector destination **********i

;called from: bios jum vector.
SETSEC: ; o set sector for G readjwrite

pars in - sector number in CX (CL)
par. out - none

nov sector,CL ;stcre sector number
ret

;*:******:ll ISECTBklliS*Um vector destination ******'*!!

;called from: bios jumt vector.
SECTRAN: ;*, Translate logical. o physical sector

par: in - sector in CI; table atJDX]
pars out -. physical sector # in

mov Ca, O ;clear high byte
mov BI CX ;load input par. for return
test DX x ;is there a Ilat to be done ?
Jz No siew ;if not, just return
add XDX ;add sectcr to tran table address
mov Bt,(3X] ;get logical sector
Jps Sectran ret ;gc return

No-skev:
add BX,1 ;nc xlatCP/M sect #O => sect #1

Sectran ret:
reE

viETDHII jump vector destination ***i**$****

;called frC: bics Jump vector.
SEIDMA: Set offset for user DNA buffer

pare in - DNA offset in CX
pars cut a-cne

nov dma o fset C;store dma offset
call Lold.Daanddr !update DNA info for all devices
"get

ISETDABI jump vector destination ****t*****u

;called from: bios jump vector.
SE7EAB: ; Set segment base f9r DNA buffer

pars in - segment in CX; pars out -none
mov da segmen CX ;store dma segment
call Lo dmaAddr ;update DNA info for all devices
ret

173

~'**~***** GETSEGTO Jump vector destination *****

;called from: bios lusp vector.
GEISEGT: ;*Return offset J memory desc table

*parm i - noi al nB
**parm out -n agdress of al nB

MOT BXofiset mem desc-table
ret

; All 1/0 parameters are setup:*
* disk is disk number (SELDSKI

track .s track number (SETTER)
sector issector num ber SETSEC

;* Each device maintains its own DMI info as required *
h;fr its controller usingsdma offset and dma segment. *

~RE AD reads the selected sector to the DNA address, *
;* and WRITE writes the data from the DNA address to
;* the selected sector. The MBB-80 bubble wi41 use diff-*
;* erent routines to perform the read and write funct- *
;*ins. The MBB- 0 works with M bub no (from !BBTrack*
;* Hat) and MIB page. no (frm EbbSector Xat) t tese *
;* values are d-erive a from the vars, tra~k an~ sector. *

$EDjupvector destination *~*~*

;called frcm bios jump vector.
READ: ;*Read a li8 byte sector

;*Para in -- none
*pgrm c ut return code in AL

00 = CK, FE = unsuccessful
cup device type,disk type ;is this a floppy~disk?
jne Bubble -read ;if not, use bubble routine
nov CL.4-
mov AL,DK disk ;combrmne disk selection
sal AL CL- ;with opcode
or AL 6K read-cud ;create iopb for read
MOT DI 0~ comAL ;load iopb
call DI Zyacu~e Cad ;perform the read
imps Reid ret ;return

Bubble read: - ;use bubble routine to read
call Mbb8QRead ;perform the read

Read.ret:
ret

174

; ,,s , €,i ,€**8€ ¢~t.,il, ,s~s*s~.¢sms~ms~s~ss. €...s-.

;called frcs: bios Iuap vector.
WRITE: -* Writes a 128 byte sector

parm in - none
pars cut - return code in AL
00 = OK, £F = unsuccessful

mp devic te,disk type ;is ths a floppy.disk?
e bble w ite ;tf not, use bubble r utine

mov CL4&
mov AL,DK disk ;c9mbine disk selection
sal AL CL- ;with opcode
or ALoDg write cad ;create iopb for write
ov D f3 com IL ;load iopb

call DI E~ecude Cmd ;perform the write
japs Write ret ;return

Bubble write: ;use bubble routine to write
call Mbb8O_Write ;perform the write

Write ret:
Eet

' The following subroutines perform various specific *
;* tasks for the above jump vectors.

DEVICE INITS subroutine *

;called from: INTT,
DeviceInits: ; ,* Perform any nit necssary for

all devices generated.
pars in - none
parm cut - none

;(*** Device initialization for the iSBC 202 disk **S)
;load address of the iSBC 202 icpb (channel ccaand)

mov CL,4 ;load CL for shift
mov AX,CS ;load AX with this segment
sal AXCL ;,cve segment to high byte
add AX, offset DK iopb ;offset of lopb [chan cad)
aov DK iopb addr XX ;stcre for later use

;see if any SIC 202 controller to be initialized
xor CX, CX ;clear CX for counter in lcop
mov CLnum log-disks ;load # of disk devices

Check i202: -

jov BXCX index into device table
cap device tableBX],disk type ;i202 disk?
Se Init .i02 ;if so, go init the ccntrller
loop Cheak i202 ;check next
jmps Donei2C2 ;nc i202, gc init mbb80s
in AL,DKP result tyre ;clear the controller

in AL DKP result-b ye
out D? rlfet ,L-;AL 4s dummy for this command

;f*** DeTi e initmalizatmon for the MBB-80 bubble *,*)
;initialize each MBB-80 ccntroller defined

Done i202:
xor CX CX ;clear CX for counter in, lcop
mov CL fnu. log d:sks ;load # of disk devices
push E; - ;save register

Initumbb80:

175

|

xor. BX, BX ;clear BX for index
moy BL,CL ;lcad cont # to BX
dec BX ;subtract 1 for table
add L, BL idcuble index for word lookup
nov AX,:B logical ;.table(BX],iget cont addr
cap AX, MBnull ;Is it a null addr (place holder)?
je Next ibb80 -if so, go tc next cont'ler
mov Mpcntbase,IX ;load to current base

;initialize page size and minor loop size
nov ESAX ;load ES to address bubble
nov AXMB maxpaggs ipayes per bubble device
nov ES:MBP loopsize .o,AL ; _oopsize low byte
nov ES:BP-lccpsize-hi,AH ;loopsize hi byte
mov ES:MBP-pgsize reg ME pagesize ;load page size

,:ssue reset aommand-to he controller
*ov AL,M B reset cud ;reset mask byte
nov ES:.!BP cmnd-req,AL ;issue reset command

;initialize eich bUbble device
push CX ;save CX, outer counter
nov CX MB _axdevs*l ;count for lccp-# of devs
mov ALO ;device # to t i ialize

For each:
mov ES:MBP select tub AL ;select each device
mov ES:MBP-cmnd rig Mb init cad -init this device
push AX1 pu'h C17pust ES ;sale bubble*,counter,ES
call Mbb 0 Wait ;wait for controller
pop ES! pop CX! pop AX ;restore ES,counter,bubble#
inc AL ;next device number
loop For each ;dec CX, loop if nct zero
pop CX - ;restore CX, cuter counter

Next mbb80:
loop Initmbb80 ;go init next cont
POP ES ;restcre register

Device ret:ret

DK EXECUTE CMD subroutine *

;called from: READ WRITE.
Dk Execute Cad: ;* Executes a disk read/write ccmmand

parm in - none: pars out - status of the ap in AL.
00= CK, FF= unsuccessful

.N Lcad retries:
mov DK rtry cnt,nax retries ;load count for retries

;send iopf to 3isk controller via two ports (2 bytes)
Send iopb:

in AL,DKP result type ;clear the controller
in AL DKP-result-byte ;clear the controller
mov If DK-iopb aadr ;get address of icpb
out Difi 3pb I:w,AL *output low byte o icpb addr
mov AL 1H -lcaa high byte to AL for output
out DKP ioob higA,AL ;out high byte of iopt aadr

D ;check for-inte.rupt from disk ccutroller
in AL DKP status ;get disk status
and At DK-chkint mask ;interrupt seT?
Jz Disk ifft $if no:, keep checking

;see if interrupt siqnifies I/O completicn
in AL DKP result type ;qet reason for interrupt
cap AL,O0 - was I/C conplete ?
jz Check result ;if so, go check the result byte
in &L DK7 result byte ;clear result b te
Mov At,087H ;disk wasn't ready - load code
jmps Retry . lcad err code, and go retry

;chec result byte ?or errors

176

Check result:in ALDKP result bgte ;let result byte
and At Ofs.H ceck or err in any bit
jnz Rery ;fcund cne,.retry

;read or write is ok, AL contains 0 for return
imps Dk execute ret

;retry the-comuand-until maxretries attempted.
Retry:

mov DK err code,AL ;save error result byte
dec DK-rtry cnt ;dec number of attempts sc far
.jnz Send iopb ;it not zero, send command again

;dil max refries, no success - issue error message
call Dk Print Err *print out appropriate err msg
in AL CNP da a ;f ush usart receiver buffer
call 6con Echo ;read upper case console character
cap AL, 'CT
je Wboot lump ;carcel-" c a p A L . 'iH
ce Loa retries ;retry max times again
cmp &L,T1'
je Dk execute ret ;igncre error
or AL-OFFH - ;set code for permanent error
japs 6k execute ret

Wboot jump: ;canet make it w/ a short jump
3mp wBOOT

Dk-execute ret:
ret

DK PRINT ERR subroutine *

;called frcm: Ck Execute Cad.
DkPrintErr: ;* Prints out disk error messages.;* para in - uses DK err-code

;*P parm cut - none -
mov BDK err-code ;load code for index to table
mov BaO 0 ;clear high byte of index

Ust LfH ;see if er;or bits in low nibble
1z use i index ;error is in high nibble

Use low indx:-
mo BL,K er loinx(BX] iget offset in addr tablejPs 'fn . ;go prin the message)mps Prin it

Use h- index: -
35v CL,4 ;shift four bits right
sbr BXCL ;shift it right
mov BL,DK err-hiinx[BX] ;get offset in addr table

Print-it:
mov BXDK err table[BX] ;load addr of message
call Prin!__Msj ;print appropriate message
ret

L IF not loader bios
INIT BIOS INT subroutine *

;called from: INIT. (if not loader bios)
InitEios.Int:;** sets up the interrupt vectors in low

memory to vector soft/hard interrupts.
par n - none
para out - none

push Di!push ES ;save tbe DS & ES register
moy iob e,O ;clear lobyte
mov AX, 0
mow DS,AX
mow ES,AX ;set ES and DS to zerc

177

;setup interrupt 0 to address trap routine
mo nto off set offset Trap-Handler
mov Into-segment,CSmny DI, -
mov SIO ;then propagate
nv CX,510 ;trap vector to
rep *ovs AX,AX ;all 256 interrupts

;BDOS offset to proper interrupt
*ov bdos int offset,addr-bdos
pop ES I-pop-DS ;restore the ES & DS register
ret
ENDIF ;not lcaderbios

IF loader bios
INIT LDR INT subroutine

;called from: INIT. (if loader bios)
Init LdrlInt: ;* sets up the interrupt vectars in low

** memory to vector soft/hard interrupts.
parm in -none
parm cut none

;BDOS offset to proper interrupt
push DS ;save the DS register
nov AX,O ;set to absolute low memory
mov DSAX ;make it addressable
tov bdos int offset addr bdos ;offset
nov bdos-int-segmen4 CS - ;this segment
pop DS - ;restore DS register

;issue messaqe telling where loading from
tov B1, offset msqi202 ;assume 1202
cop device table, dsk tye ;check default disk
je Print loader ;is 'isi, print msq
Mov BX, o~fset msg mbb ;its the mbb%0

Print loader;
Call Print Msq ;write msg to console

; (additional t oa er initializations go here)
ret
ENDIF ;if loader-bios

LOAD DNA ADDR subroutine *

;called from: INIT SETDNA, SETDMAB.
Load Dma ddr:;** u on new DNA addr, updates all devicees

- M words channel commands, etc. that
are needea because of a new DI addr.

parm in - none, operates using variables; dmra offset andog sgmn..
• aarm 3ut - none upates var DK dmaaddr

;update iiBC 202 disk controller dma address
mov CL,4 ;iSBC 202 uses 16-bit address
any AX,dma segment ;load segmentsal AX, CL - ;mcve segment to high bits
add X, dza offset ;add in dma offset
mow DK dma-addr AX stcre new dma addr - disk

;MBB-80 ues 20-bi., address, thqrefore can use the
;dma segment and dmacffset variables directly.

ret

178

MBB80 READ subroutine *

;called from: READ.
,bt8ORead: ;** reads.a sectcr from bubble

;* par. in- none
;* parm out - status of the op in AL.
;*~ 00= CK, FF= unsuccessful

push ES ;save regster
cal1 Mbb80 Sector Ilat ;compute ist page# of sect

;establish addressabIlity to controller
mor AX,MB contbase ;address of ccntroller base
mov ES,AX- oad 3S to address bubble

;set multipage mode
mow ES:BP cund reg,MB _apage cud ;multipage mode cod

;load first p1ge nUmber for traisfer
mov AX,.MB page no ;current page nuaer
noy ES:3BP pagisel 1oAL ;page select 1o byte
mov ES:BP-pagesel-hi,AH ;page select hi byte

;set number of pages To trans er = pages/sectcr
mov ES:BP pagecnt lo,MBfpages sec ;#paqes to xfe;
mov Ej:MBP-aqecnthi,0 ;hi Me of # is 0

;set up dma a3r ess tc receive data
mov C1 B buflen ;count for loop-buffer size
push DW - ;save CP/M1s DS
mOV i ma_segmen. ;get dma segment
pushx At';save dma segment DS
mow BX,dma offset ;offset of dma area

;select bubbl* device and issue read command
mow AL,B bub no ;current bubble umber
pop DS ;done local, read dr dma area
moT ES:3BP select hub AL;select current dev #
mov ES:MBP-cmnd :ig,MI read cnd ;issue read from FIFO

;_ait for intirrupT frCm Zcntr ller
Bead-int:

mov AL,ES:MBP int flag ;get interrupt status
and AL 3B chk~nt-lask ;;nterrupt set ?
jz Real it . f zero, keep checking

;see if reld enougn from bubble sector to fill dma area
cop CX,IMB buf len - sectgr size) ;transferred enough?
jnz Read one ;if-not, read another byte
pop DS ;restore CP/M's DS
mov BX,offset MB overflow ;reset dest to overflow

;read from MBB FIFC-buffer into dma area
Bead-one:

mov AL ES:MBE rdata reg ;read a byte into accum
mOw r[B1, U ;]- oad accus into dma area
inc BX ;increaent index
loop Read int ;dec CX loop if not zero
push ES ;save EA for call
call Mbb8O lait ;wait for controller
pop ES - ;restore ES after call
now ES:.BP-cundreg,MB_inhint_cud ;clear cont int
pop ES ;restore register
aow AL,3 7 indicate success

179

MOB80 SECTOR XLAT subroutine

;called frc.: Mbb8O Read Mbb8O Write.
Mbb80 SectorXlt-;** computes 1st iSge# lor a gIven sector

on a sin1 chip. Based on 80 sectors
;** on eac I p - sector - 128 bytes.
;** pars in -none, works on sector
;* para out none, updates MB paue no

xor AX, A ;set AX to 0 to EclI fage#
xor CXCX ;clear CX for counter
mov CL, sector ;ctr for translatica loop
xor DZ.DX ;clear DX
mov DL MB sector ;sect* for 1st sect on trk
add CXDX- ;add 1st sect# to log sect#dec CL
dzbb0eec CL subtract 1 fcr the od z bb8 sxeexit ;sect 1 is page 0, no ffatAdd sgew.

- add AX,MB skew ;add skew between pages
clc ;clear carry
sbb AX, B maxpages ;mod to * of fages
Jae Dec sector Jump if positive (CF=O)
add AX,.B_maxpages ;Vent (-), add back #pages

Dec sector:
- loop Add skew ;dec sector#,add skew again

Mbb80 sx exitT
ov-HB_pagenoAX ;store page number

ret

MBB80 TRACK XLAT subroutine

;called ftcs: SETTRK.
Mbb8OTrackXlat:;** computes bubble i from track #. Gets

-** first bubble sector (1-80) for that
;* track for later conversion to page 0.
;** para in - none, works on track.
;** pra out - loads MB bub ncMIB sector

xor B ,BX ;clear NX f~r add-
mow BLt-ack ;load track - index
add BL,BL -double track# for index
nov AIMB track tatleBX] ;get word trom table
mow 38 buB noAN ; Qh byte = bubb devices
moy NMBsecTorAL ;iigh nyte a 1st sector#
ret

.B880 WAIT subroutine *

;called frcm: Mbb8O Init, Mbb8BOead,
W Mbb80l-rite.

.LRO Wait: ;** checks stat~is o! MBB cont for busy
-** keeps checking (walt) until not busy
:6* narm in - cone
-,* arz cut - ncne

mov XMB conbase ;address of cont base
mow ESAX- ;load ES to addr bunble

See-zero:
ov AL, ES:.IBP status reg ;get status register
and AL,.MB chkusy cnm ;;s it all zeros ?
z see zero - ;if sc, keep checkingCcnt busy:-

mov AL,ES:MBP status reg ;get status registerand AiMB chk~us~yca ;fee if busy, and t9 mask
jnz Cont15usy -f busy, ceck again
ret

180

lMBB80 WRITE subroutine ** * * ***** *es* *****.**.*I*** *****s***********s**********

;called frcm: WRITE.
Mbt80 Write: ;** writes a sector to bubble

;* par. in - none
;,* par. out - status of the op in AL.
; 00= CK, FF= unsuccessful

IF not lcader bios
push ES ;save register
call Mbb80 Sector lat ;get ist page# of sector

;establish addressability to controller
mow AXEB contbase ;address of controller base
nso uESX- ;load ES to address bubble;set multipage mode
mov ?S:RBP cund regMB apage cad ;multipg mode cad

;load first page n~aber far tra*Esfer
mov AXMB page no ;current page number
soy ES:MBP pagisel l oAL ;page select 1o byte
mow ES:SBP-pagesel-hi ,H ;Rage select hi byte

;set number o! pages to transter a pages/sector
soy ES:8BP pagecnt loBB pages sec ;Epages to ifer
mow ES:MBP-pagecnt-hi0 - hi yte of # is zero

;set up daa a dress fZr transfer
mow CI. B buflen-1 ;count for loop-write size
push C5 - ;save CP/A's DS
mow AX doa segment ;get daa segment
push - w;s e das seqsent DS
mow BIdma offset ;aadress of dsa area;select bubble dewice and issue write cad
soy AL,£ B bub no ;current bubble number
mow ES:BIBP-select-bub,AL ;select current dew #
pop DS]readdr daa area
mov kL, 8XB dloa4 first byte
mow ES: ;Pdatareg.AL ;write byte to EBB buff
inc BX ; ncrement index
ow ES: ! BP cmnd req ,EB wrfte d ;send write to MBB

*wai for intIrrup fta cntroller
Write int:

now AL,ES:MBP int fla ; get interrupt status
and AL.SB chknti1ask ; nterrupt set ?
jz WTie nt ; if zeo , keep checking

;vr te into-fBB FIFO buffer from dma area
mow AL, 31] ;byte from dma to AL
sov ES:;BPvdata regAL "Irite a oyBeBto BB buffncB% -; increment lndex
loop Write int *dec C, loop if not zero
pop DS ;restore CP/3's DS
push ES ;save ES for call
call ffbbSO Wait ;wait for con roller
pop ES - Estore ES a ter call
mow ES:KBP-cmndreg,MBSnh nt cod ;clear cont i4t
pop ES ;restare register
o AL,O ;return success code

ret
ENDIF ;not loader bios

PRINT MSG subrcutine

;called frcs: INIT, Dk jrintErr,; Tr apHan lor.-
P.intfsg: * Print* a aesfale to the console.

;** para in - ad ress of message in BX.
• parm out - none

soy AL[Bt] ;get next char from message
test AL,AL ;is it zero - end of message ?

181

Jz Pmsg ret ;if zerc return
mov CL IL ;load pare for call
push Bt ;save address of message
call CONOUT ;print it
pop BX ;ristore address of message
inc BK ;next character in message
imps PrintNsg ;next character and icop

Pmsq_ret:
ret

* *********************.***********************************m

TRAP HANDLER subrcutine *

;called from: Vectored to from CP/M interrupt
Tra_Handler: ;' handles all traps.

; pars in - none
par. out - none

c1i ;blcck interrupts
moy AXCS
mov DSAX ;get our data segment
uov BX,9ffset msg intt;ap
call PrintMsg ;go print it
hlt ;Tar stcp

UCON ECHO subroutine

;called frcm: DK Execute Cad.
Uccn Echo: ; qet and echo-a console char and shift

;~~*to upper case.
;" pars in.- none
6N8 par. out - returns char read in AL

call COuIu ;get a console character
push AX ;save input par.
moy CL AL ;icad parm for call
call C6NOUT ;echo to console
pop AX ;restore input pars
cup AL,'a'
Jb tUcon ret ;less than 'a' is ok
cmp AL T z'
Ja Ucon ret ;greater than 'z' is ok
sub AL,a'-'A' ;else shift to caps

Ucon re t :
ret

; t!****t*te*tt***t************e*~*******e*m************e****

DATA SEGBENT AREA *

Aataoffset eau offset S

DSEG
org data.ffset ;contiguous v:th code seg

------------------- Variables---

include config.def configuration table for all devices
devicetype db pe ;type of de (defaultulcppy)
disk 4b 0 - ;dWsk nu maer
DK disk db OO ;f 1ppy disk controller disk #
DK:errcode db OOH

182

DK err hiinx db 00H1,020H 022H 01 OO024H 00H 003 00H 026H1
DK..erloinx db O0H C2H 64H1 OAH OAH OahA M A 016H

db 012A,014H,06 OU 8:lf,1HOe
~K.er.ta~e dv er0,erl er2 er59 er4 er5

dv er6,er7,erSer9 :erk erB
lv erC erf eri,erF ert;,er20
dv erli6eerd0

DKjopb.addr dv 0 ;addr of iopb (channel command)

;This is the iSBC 202 iopb (channel command - 7 bytes)
CK iopb db 080H ;iopb channel word
DKic con db 0
DK secs tran 1b 1 ;numter of sectorq to xfer
trick db 0 ;track to read/write
sector db 0 ;sector to read/write
DK dma addr dv 00003 ;dma addr for iSBC 202
;Efd cl iopb

DK rt ry cnt db 0 ;disk error retry counter
dui of fset dv 0080H ;DNA offset (default)
4masegment dv 0 ;DNfA segment
ictyte db 0

iocai stack rv 32 ilocal stack for initialization
stack-base equ offset

iB bub no rb 1;bubble device nunter 0-7
MB con~base dv 00003 segme nt base addr for contr'ler
ff3 cverflov rb fMb-bufi en-isector size) ;read overfly

MBpq~o rv -bub e page number (18

;Eich entry in the track ta~le corresponds to one of te
;24 tracks on the MBB-80. Ihe 1st byte in eachtentr isthe
;bubble number; the 2nd byte in each ent ry is te starting
;sector number for that tr ack on that bubble device.

ff3 track-table dv 00003,O0laH 00'4H OI001OlaH 01314H
dv 02QQHU O2JailO23411,0305,03 laM, 034 5
dv 06 008H 04laH 0434H, 8008 Oil0 lH 0 34H
dv 06005.O6laH,0634H11,OH,071aH.0734H

-----string data area for ccnsole messages ---------

~r0db cr if 'Null Error ??1'0
er1 ~b cr. 1.:.Celeted Recor~ :0,0
erl lb cr ',CRC Error :1.0
er .I egu o
cr4 db cr lf,*Seek Error :0,0
cr5 *equ or_
erC- equ cr0
er7 q u or0
are 19 cr lf,'Address Error :1,0
cr9 euer6
crl 45 cr lf,'ID CRC Error :1,0
crE cqu er6
e:-C aqu ery
or! 19 cr~lf,'o address Sark :1 0
erl db c:.lf:$lata Mark Error :1:0
cr10 db cr,lf 'Data Overrun-Underrun :110
cr20 db cr, f.'ilrtte Protect 1:'0
er460 b cr,,1,'Ur te Error :',0
er80 Ilb cr,1.,Drive Not Beady '0
usqinttrap b crlf

db 'Tnt rrupt Trap Halt,
db Cr,,.

183

F -i
I loader bios

msq signon db cr-lf,cr,lf
- db 'C§/M-e6 Version 1.0', rlf.

asqi202 db *Load.ng CP/M from an iShC 202 .',crlf,0
msq-mtb db 'Load ing CP/M frcm an MBB-80..',cr,li,0

ENDIF ;loader- os

IF not loader biosmsg_signon db cr, if,Er, ifdb 'iSystem Generated 11/05/81'

db cr if I'odif ed for iSBC 202 risk and I
db 'MIB-80 Bubble',cr,lf,O

ENDIF ;not loader bios

;read in disk definitions
include dkprm.lib

** System Memory Segment Table ******

aes desc table db 1 ;1 segments
dw tpa seg ent ;st seq starts after BIOS
dw t a-lenqth ;and ext ends to high RAN

last offset egu o f~et ;
tpasegment equ (last cffset+O, OO.H15) / 16
tpa-length equ addrinighra - tpasegment

db 0 ;for GENCMC to fill last address
;*e$*$a**.*msat$ end of variables ***********w**********s*

DUMMY CATA SECTION

DSEG 0 ;absclute low memory
org 0 ;sta-t CP/M interrupt vectors

in.O offset rw 1intO-seqment rw 1- ;pad to bdos call vectcr
rw 2*(bdos nt type - 1)

bdcs Snt offset rw 1 Tadd! of bdoslint call offset
bdcsint-sagment rw 1 ;addr of bdos-in- call segment

IB-80 CCNTROLLER AND PORTS *

ESEG

M!. pagesel Ic rb 1 ;Is byte for page select, (0)
?5Epaqesel-hi rb I ;ms 2 bi.s for page select, (1)
MB_cmnd req -b 1 ;command register, (2)
MB -rat! rag rb 1 ;read data register, (3)
MBFl-data-reg rb 1 ;write data register, (4)
ME fsratu_ reg rb 1 ;status register, (5)
MBE-paqecnT lo rb 1 ;is byte for page counter, (6)
3BEE-aqec~t -h4 rb 1 ;ms 2 bits for.Ra 1 count~r, (7)
MBI-lcops~.z .to ib 1 ;is byte for mir oop size,(8)
MBF-lcopsize-hi rb 1 ;ms 2 bits for win loot size .9j

MBE rw 1 ;interna. use(page pos f (AB)
MEpqsizereg rb ;page size register,

rw 1 ;TI use on(y (D
NBE select b rb 1 ;two uses: select bubble de vF)

r-intfllg equ _BPselectbub ;interrupt flag (F)

;***~**m end of Controller and Port definitions *S****

End of CE/,-86 Customized BIOS *

END

;1ItENA. ES: Pascal = dkprm.def.text
* CP/B = dkprm.def => dkprm.lib

;The following is the disk definiticn for
;the customized BIOS, I/N-86. It is fo; the
;Intel 202 disk contrc11er (double density)
;and the MBB-80 magnetic bubble device cont-
;rcller. DD drives are #0 and #2, and the
;butbje is #1. This definition inqludes all
;pbysacal parameters fir each device as req-
;uar2d by Ce/H-86 for its ,GENDEFp'cgt.
;a file produced by 'GENDEP from thls ltle
;is included in the BIOS during afseamly.
;See CP/B-86 manuals for explanat ions.

Aisks 3
diskdef 0 ,152, 2048,243 128,128,2
diskdef 1,,126,:1024,71,520,2
diskdef 2,0
endef

;FILENABES: Pascal = CONFIG.DEF.T!XT
CP/H = CONFIG.DEF

"Tbis f$le describes the lc cal mappings between
;CE/.q disk numbers and the fsk d evice-depenadent
;information. CP/M-86 allows for up to 16 disks,
;nuipbe;ed from 0 to 15 decimal.
;Tbhis implementation is generat.ed for 3 CP/M disks.

Aumog_disks equ 3 ;# of logical CP/H disks defined

;Tbe following table descrites what type of device
;ccrresponds to each loqical diskc m2ber. There
;must be one entr y cr each C/isk doinea, ith a;uIximum of 16 en-les. Thi n with a

m nli hs miles tto only recog-
;n zes two tes: SEC 202 a3 BB-80disks.
;CT/. disk 0 and * map tc iSBC 202, while CE/B disk;01 maps to an EBB-80.

Aevice.table db disktype,mbb80_type,disktype

[The following table maps logical CP/U disk numbers to
;XSEC 202 controllar disk numbers (0-3 only, since this

;igplomena'.on has 1 iSBC 202 controller . All CF/B
;Iisk numbers p rceqding the last 'SEC ?02 disk must have

t;an entry.-- null, if n t an iSEC 202 disk.
:is 1penntat on dfines CP/B disk 10 and #2 to
;SEC i2 controlor disk numbers #0 an #1.
i6K null euOf

du OffHDK-loqicaltable d500H,D9_null,01H
;The following table maps logical CP/ disk numbers
;tc MBB-80 ccntroller base segment addresses. h±l
; r/m disk numbers defined must have an entry (fgr
;initi aization) -- if no MEB-80 exists at a logical
;Cf/M disk number, then the null entry must exist.

185

Iis~ui al a~1 foil 11 O0fl.11as-ll

;End cf CO f4gara~.On file

186

PROGRAM LIS7ING OF BB80OB.A86

;FIIENAMES: Pascal = MB8OSCM.TEXT
CP/8 = B80tOB.A86

titla 'Customized ROM Boot Loader'

; BCH bootstrap for CP/n-86 on an iSBC 86/12A
;2 2 with the

iSBC 201,202 Flopp Disk Controllers
; anu

; BB-80 Contrcller

:' This Customized RON loader fcr CP/N-86 has
* the following ha;dware configuration:

Processor: iSEC 86/121
Disk cntroller: Inte SBC 201 or 202
Bubble memory: eBE-80 with mscry-mapped 1/0

;* memory model: 8080

* Programmers: 3.A. Naufeld, H.S. Hicklin
* Revisions :

This is the BOOT BCH which is resident
in the 957 mcnitor. To execute the boot

• the monitor must be brouqht on-line and
; then control passed by grfd4:0 or by -

qffd4:0004. The first monitor command '
• will boot to an iSBC 202 disk and the *
• second command will boct to an dBB-80.
F Pirst, the ROM moves a ccpy of its data *

; to RAA at location O00001, then it ,
; init.ali;es the segment registers and the*
; stack pointe;. Tke i8259 hen pheral int- *

rupt controller is setup for Interrupts *
; at 10 to 17g (vectors at 00040 -000 PH)
• and edge triggeie auto-EOI (en of in- *
; terrupt) mode with all interrupt levels *

;' masked-off. Next, the apropriate device*
• ccntroller is initialized, and track 0

4 sector 1 is read to deteniine the target *
S aaraph address for L ADER. Finall F

;* e OADER on track 0 sectors 2-26 an *
* track 1 sectors 1-26 is read into the

;* target address. Control then transfers
;* to the LO&DER prcgram for execution. ROM *
;* 0 contains the even memar locations and*

P SOn 1 contains the odd ad resses. BOOT
;* EON uses RAM between OOCOOH and O0OFFH *

-(absolute) for a scratch area.
*li=,lill a-s * a s ** * *1** * * * *. *

187

*~*************** EQU~ATES **********s**

----------------- iscellaneous equates---------------

clT equ OdH ;Ascii carriaqe return
disk type equ 01H ;type fo; iSBC 202 disk
if s - equ OaH ;Ascii line feed
ab8O type equ 028 ;type foj MBA-80 disk
rcosel equ Offd4H ;ase o± this code in RON
sector size equ 128 ;C/ sector size
start_ !rk1 egu 0c88 ;offset for trk 1, fcr DNA

-18251 USART console ports-----------------

CONP data equ Od8H ;18251 data port
CONP-status equ OdaH ;18251 status port

- -- Disk Controller command bytes and masks (iSBC 202) ---

DK chkint mask equ 004H ;mask to check for DK interupt
CK-home cid equ 003H ;move to home position command
DK-read-cmd equ 004H ;read command:1 I

---------INTEL iSBC 202 £isk Controller Ports-----------

DKE base equ 078H ;ctrler's base in CP/M-86
DKP-result type equ DKP base+1 ;operation result type
DKP-result-byte equ DKP- ase+3 -operation result byte
DKP-reset equ DKP-tase+7 ;d .sk reset
DKP-status equ DKP-base !disk status
CKP-iopb low equ DKP-base 1 ;low addr byte cf iopb
DKP-iopb-high equ DKP-Lase+2 ;high addr byte cf iopb

------ Magnetic bubble characteristics (MBE-80)

MB buflen equ 144 ;buffer length for MBB sector
MB-contbase equ 08000H ;segment base addr fcr ccntr
MB- axdevs egu 7 ;bubble devices are #0-57
MB-maxpages equ 641 ;# of pages on each device
ME pages sec equ 8 ;# of Ipaes per logical sector
ME-paqes!ze equ 18 ;bubbie evice page s.ze
1B-tOsl page equ 0 ;starting page# for trkO sectl
MB-tOs2_page equ 12 ;startng pages for trkusect2
BE-tls1-page equ 312 ;starting page# for trkl,sectl

---- Magnetic bubble ccmand bytes and masks (MBB-80)

ME chkbusy cmd equ 020H ;is controller busy ? status
MB-chkint iask equ 080H ;iask to chk for 3IB interupt
ME-inhint-cmd equ 080H ;interrupt inhibit/reset mask

188

MB init cad equ 01H ;initialize the contrcller
MI-mpae cad equ 0100 ;:ulti-page mode operation cad
MB read cud equ 012B ;multi-?age read cymuand
MB-resq czd equ 040H ;reset bhe contrcl er

;----- INTEL i8259 Programmable Interrupt Controller

fC 59pi equ OCOh ;8259a port 0
PIC-59p2 equ OC2h ;8259a port I

;************* ENTRY POINT AND 3AIN CODE ****************

CSEG romseg

;Enter here with gffd4:0 command for iSBC 202 boot
mor DL disk type ;set -oct type to disk
japs Start Boot ;go start code

;Enter here with qgfd :0004 command for MBB-80 boct
mov DLmbb8O type ;set toot type to abb8O

Start boot:
;moVe our data area into BAR at 0000:0200

moy AI,CS ;point DS to CS for source
soy DS,AX
mov SIdatabegin ;start of data
mow DI,offset ram start offset of destination
mow AX0 ;3et des% segment (ES) to 0000
mov ES,&X
mov CXdata length ;how much to move in bytes
rep movs AL-,AL ;aove from eproi, byte at a time

;set seqment registers and initialize the stack
mov AX,0 ;set DS segment to 0000, now in aAM
mov DS, AX ;data segment now in RAA
mov SSAX
mov SP,stack offset ;init stack segment/pointer
cld ;clear the direction flag

;Setup the 8259 Programmable Interrupt Ccntrcller
mov AL 013H
out 1 59 1,AL ;8259a ICM 1 8086 mode

out PI 59g2,AL ;8259a 1CK 2 vector 40-5Fmov ALU1fR

out PI 592,AL ;8259a ICW 4 auto EOI masterIOV AL.UffR
out PI_59p2,AL ;8259a OCI 1 mask all levels off

;*********** BRANCH TO SELECTEE DEVICE FOR BOOT * * *

;determine if booting tc iSBC 202 or to a MBB-80
cap DL,disk type ;is this a i202?
3he BootMb80 ;if not, boct to mbb8O

; " ' '' '* '*** iSBC 202 BOOT CODE *****e*****,*,*,,,*

Eoot i202: ;also return here on fatal errors
;Riset and initialize the iNDS 800 Diskette Interface

in &L, DKP result type ;clear the controller
in AL DKP-result-byte
out DK6 relet AL ;AL is dummy for this command

;home the 1SBC 262
mow Dio comDK homecmdh;load io ommand
call rEfecu e_Csd ;home the disk

189

mov DK io com,DK read cud iall io now reads only
;get tracl 0- sectof 1, The GENCMD header record

ow BXoffset genheader ;offset for 1st sector DMA
mow DK dma aldr,BX ;store dma address in iopb
mow DK-seci9 tran,1 ;transfer I sector
mow DK-sect~r 1 ;start at sector #I
call DK Execute Cad ;read track 0, sector 1

;get track-0, sector 1, the GENCED header record
mow ES, abs location ;segment loc for LCADER

o AXS ;to IX to mani ulate
mow CL 04 ;uust xlat to 6-bit addr
sal AICL ;shift segment
nov DK dma addr,AX ;store dma address in iopb
mow DK-secl tran,25 ;transfer 25 sectors
mow DK-sect5r 2 ;start at sector #2
call DK Execute Cod ;read trk 0, sects 2-26

;get trk 1 sect 1=26, put at next place in RAM
mow AXES ;com~ute offset fcr track 1
add AX,start trkl ;add in what already read
nov CL,O4 ;must xlat to 16-bit addr
sal AX,CL ;shift segment
mow DK dma addr,AX ;store dma address in iopb
mow DK-sec3 tran,26 ;transfer 26 sectcrs
mow DK-sect~r,1 ;start at sector #1
mow DK-track,1 ;start at track #1
call DW Execute Cud ;read trk 1, sects 1-26
jmp JumuTo_Lca~er ;go pass control to loader

;************V***MBB-80 BOCT CODE***********

Eoot Mbb80:
mow AX,MB contbase ;load base addr of MBB-80 cont
mow ES,1X ;make segment addressable;initialize the MBB-80 controller

;initialize page size and minor loop size
mow AX,HB maxp ages per bubble device
mov ES:MB'P loopsize 1oAL ;Iccpsize lcw byte
mow ES:BP-loopsize-hi AH ;loopsize hi byte
mow ES:BP-pgsize rgAB pagesize ;load page size

;issue reset 2ommand-to the-controller
mow AL,MB reset cud ;reset mask byte
mow E$: BP cnnd-reqAL ;issue reset command

;initialize cich b~bb e device
mow CXMB maxdevs 1 ;count fcr locp-# cf devs
mow ALO - ;device * to initialize

Fcr-each:
mow ES:MBP select bub,AL ;select each device
mow ES:.IBP-cmnd rig,B-Binit cud *init this device
push AX ;save bubble#
call Mbb8OWait ;wait for controller
pop AX ;restore bubble#
.nc AL ;next device number
loop For each ;dec CX, loop if not zero

;get track I. sector 1, the GENCMD header record
mov SX, offset genheader ;addr of dest in BANI
mow AX,.IB -0sl pagc ;paqe # for :rk 0, sect 1
mow CL,- ;transfer one sector
mow CH 1*B paqes sec ;# oi aqes to transfer
call .Ibb80 ea - ;read tri 0, sector 1

;get trk 0, sict 2-6, put at abs loader address
mow BX,abs location ;frcm GENCHD hea~er rec
mov CLd - ;convert to 16-bit addr
sal BXCL ;shift segment
mow AX, IB_tOs2_page ;page # fortrk O, sect
mow CL125 ~ g; rnfr tr5 sect 2
mow CH 25*nB pages sec ; of pages to transfer
call Mbb8O Riad ;read trk 0 sects 2-26

;get trk 1, s5ct 1-26, put at next place in BAN

190

moy BX abs location ;addr of dest in RAM
add BX.stat trkl ;add those already read
mov CL, 4 ;convert to 16-bit addr
sal 3X,CL ;shift segment
moy AX, IBtlsl page ;page # for trk 1, sect 1
sow CL,26 ;transfer 26 sectors
mov CH 26*MB pages sec ;# of pages to transfer
call Msb8O R ad ;read trk 1, sects 1-26

b * ************ PASS CONTBCL TO LOADER ************J*J

Jump-To Loader:
moV ES,abs location ;segment addr of LCADER
mow leap s gment ES ;load

;setup far jump vector
mov leap of set 0 ;offset of LOADER
jmpf dword ptr ieapoffset

;*************s~ END OF MAIN CCDE ********s*.***,=**..

;***,******* BEGINNING OF SUBROUTINES *********.** *******

CONIN sub-outine $

;called from: Ck Execute Cad.
Conin: ;** returns ccnsble keyboard character

;* parm in- none
* parm out - returns character in AL

in AL CONPstatus ;get status
and AL,2 - ;ee if ready-bit 1-is set
jz ConIn ;if not, it is zero and nct ready
in ALeCONP _ata ;ready, sc ;ead character
and AL, 07f ;ra-move parity bit
ret

CONOUT subroutine *

;called from: Print Msg.
Concut: ;** write character-to console keyboa;d.

;** parm in - character to be output in CL
:** parm cut - none

in AL CON status ;get console status
and AL 1 See if ready-bit 0-is set
Jz CO,6UT ;if zero, no, ready-keej checking
mo AL CL ;lcad input parm to AL or out
out CCP-data,AL ;output character to console
re:

DK EXECUTE CD subroutine *

;called f:cm: in-line from Boot iZO2.
Dk Execute Cmd: ;** Executes a disk read/write acmmand

;** parm in - DMA addr in BX.
;*, parm cut - none

;send iopb to disk controller via two ports (. bytes)
Send_.iopb:'n AL,DKP result ty e ;clear the controller

ni AL DKP--esult-byte ;clear the cont:dli:
sow Ak,offset DK-icpb ;get address of ic L

191

AD-All$ 026 NAVAL POTSAIWATE SCHOL MONTEREY CA F/46 9/2
ADAPTATION OF MAGNETIC SWIKl MEMORY IN A STANDARD NZCMOCOWVTE-TC (U)

7, UNCLASSIFIED DE 1M(IK4. KLEDN

out* DKP iopb low,AL output low byte of iopb addr
mov AL . ;lcad iggh byte to AL for cutput
out DKK iopb.high,AL ;out high byte of iopt a dr

;chock fcr-in e rupt from disk controllerDsk ant:-in tL DKP status ; get . sk status

and AL DK-chkint mask -interrupt set?
J% iA i T e cce kin

;se, if I/Oerru cong eti _
In AL DKP result type ;get re asoh for interrupt
cup AL..0R ;was I/o complete ?
I Check result ;.f so go check the :esult byte
a s Sen_ iopt gt not, go try again

;check resulT byte r errors
Check result:

In AL DKP resultbyte ;get result byte
and L,0811H is I/O cmplete?
jnz Fatal err ;if not fatal error
Ind AL, Of H ;check for error in ay bit
z DK execute-ret ;no errors, go return

Fatal-err:
mov CL,O ;clear CL for counterItost:
rcr AL,1 ;check each tit of result
inc CL ;ccunt each bit
test AL 01 ;test each bit
jz ?test ;zero, go check next
mov AL,CL ;not zero, error, inc count
Mov A ,C ;clear high
add AX, AX ;double for tdj to word table
mov B, AX ±icad BI as in ex
soy BX,errtbl(BI] ;get addr cf error asg

;prin. a*ppopria e error message
call Prin sg ;vrite asg to console
call Conin- ;vait for key strike
imp Boot 1202 ;then start all over

Dkexecue reE:
ret

NOBSO READ subroutine *

;called from: in-line from Boot akb80.
Hbk80 Read: ;** reads a sectc; from bubble-

-arm in - EX is the DNA offset, A is
; %he startinq page # for the xfer CL
has the I of sectors to ifer, an& CR

; has the # of pages to xfer.
;** par. cut - none

;set multipaae mode
Nov .S:HBP cand reg,MB mpage cad ;aultipg mode cad

;load first rage number fOr transfer
Mov ES:NBP 1agese ,AL ;page se ect bemov ES:MB agesel-i 9AH ;jage select. 1 tte;set number ot pages Tc trans fer = pages/sector
moy ES:,4BP pagecnt lo,CH ;#pages to xfer
aov ES:BP-pagecnt-hi,0 .;hi. te of # is 0

;set up ama aa ress tZ receive data
OTor CH';clear high byte of CX• i Read-a sector:

push CX ;save 0 sectors to xfer
mow CXMB buflen ;count for loop-buff size

;select bubble device and issue read command
nov ES:MBP select bub 0 ;trks 0,1,2 on dev #0
mov ES:NBP-cmnd rig,mb read cud ;read from Piro

;wal* for intirrupt from acntrller
Readit:

192

soy AL,ES:HBFint flag ;get interrupt status
Ind ALaNO c terrupt get Afkt zerot kee checkin

;see if rea enough frcm bubb e sector a il or
cmp CX, plBfbuflen - sector size) ;xferred enough?

nz. Rea done ;iT ncl, re4d alother byte
push BI- *save catio n RAN

;read from BBB FIPO buffer into dma area
Read one:

IoAL ES:NBP rdata reg ;read a byte.into accum
Mov]L - ;load accum into dma area
ac I ;Zncrement indgx

loop Read-int ;dec CX, o f nqt zero
po a B ;restore ao roSer
loop Read a sector ;read next sector
cAl HbbeU Tai% B ;Vit fre; cottroller

rat

OBBSO WAIT subroutine

Hbb8O Wait: ;called from: Boot HbbeO, Kbb8O Read.
ebb80 att ;* checks status af BOB cont fUr busy

keeps checking (vait) until not basy
,* pare in-none

Sez;* par. out - none
esoy AL,ES:B status reg jel~stfuseeister

and AL,NB cn.©us. cue ; 0 al zeros
C z See zero ;if so, keep checkingCent busy:
soy L,ES:NBP status reg ;get status register
and ALeB chkausy cma ;se if busy, and ti mask
jnz Cont-Vusy -;i busy, check again
ret

PRINT HSG subroutine

;called frcm: Dk Execute Cad.
PrintHsq: ;** Prints a ansage to the console.

;* parsn i- address of message in I.
pars cut none

Moy CLB] ;et next char from messageI test CL,CL. R$s i.tero - end of mess age ?
I: Pmslret f zer Q return
push3 a;*sa we address of message

4 !call Conout ;print it
lop BX ;restore address of message

nc BX ;next character in message
Jps PrintMsg ;next character and icop

Pmegret:
ret

END ? SUEBOUTINES

193

;Image of data to be moved to RAN

aatabeqin equ offset £

;A template iSBC J02 io~b (channel commanid 7 bytes)
b 08 H ;iopb chanie.l yard

db 0 ;io command
db 0 ;number of s.qtors to xfor
db 0 ;track to read
db 0 ;secto to read

;Erdcf opb dv 0000H ;dva a5dr for iSBC 202

cerrtbl dv offset erO
dw offset enl
dv offset er2
dv off set er3
dv off set enil
dv offset cr5
dv offset er6
dv offset er7

&er0 crj p'Nul rrCI ?~
Ceri Cr,H,1CRC Ero 0
Cer2 db cr.lf,'Seek Error61 O
Cer3 db cr if RAddress Error§,0
Cer4 db crL fData Overrun-Underraul,0
CerS db cr, If 1Vnite Prctectl .0
Cer6 db cr~lf,'Urite Error',0
Cer7 db cr lfv'Drive Not Reay.

hataend equi offset S

&ata..length equ dataend-databegin

reserve space in RAN for data area
(no hex records generated here)

DSZG 0
org 0200H

iam..start equa S

:T bis is the iSBC 202 iopb (channel command -7 bytes)
j~ opb rb 1 i opb channel word

D o .con, rb 1 ;±o command
DK Secs tran rb 1 ;number of sectors to zfer
Dj-tracKt rb 1 ;track to read
D _ Bectod rb 1 ;secto toeao

rD 1m ;dma a dr forSC20

errtbl rv 8
crC rb length cerO ;16
e r1 rb length ceri
er2 rb length cer2
er3 rb length cer3
er'4 :b length cer4 ;1'4
cr5 rb oenitt cerS ;11
cr6 rb Ion tI cer6 ;15
er7 rb length cer7 ;17

l ea; offset rv 1
ca p segment rv 1

W 32 ;local stack
*stack-.offset equ offset S;stack from here down

1914

;128 byte sector will be read in here-GENCED header
genheader equ offset S

r1
rv 1

ats-lccation rv 1 ;absolute load location
rv 1
rv

;MBB-80 CCITROLLER AND PORTS *

ESEG

M1E pagesel lo rb 1 ;ls byte fcr page select. (0)
NE-paqesel-hi rb 1 ;as 2 bits for page select, (1)
MDE cund reg rb 1 ;comaand regiser, (2)
ME-rdata reg rb 1 ;read data register, (3)
ME vdatareg rb 1 ;write data registei (,4)
M-statul reg rb 1 ;status register, (oner .6MEE-pagecnf lo r b I ;lz byte for page 4.o"ue0, (6)_
MBF-pagectthi rb 1 ;as 2 bits for page counter, (7)
MiE1copszi lo rb 1 ;3ls byte for minor looF stze, (8HBf-Ioopsize-,i rb 1 ;9s 2 bits for min loot size,(9)

ME rw 1 ;nterna use(page pos, (AB)
_Afpqsize reg rb 1 ;page size register, c)

rb 1 aT use onl, (DA
BF_; eleg bb rb 1 .;tv uses: sec Dlubble ev, F
MEE n- n Ig equ MBP select bub n • ructagf F

***end of Contr'aller aid Fort deilato *

End of CP/M-86 Customized ROB *

END

195

11

LIST O RNERBNCES

1. Halliday D. and Resnick F undamentals of Physics*
Wiley ana Sons, Inc., 1970. dP

2. O'Dell, T. H., Saanetic Bubbles, John Wiley and Sons,
Inc., 1974.

3. Markham& D. C., "Haqnetic Bubble Memories: Part 1 The
-Device, leronic Ealeein . v. 51, no. 624, pp.86-99, June 19 tat. nr

4. Chang, H., Mlanetic-Bubble Memory Technology, Marcel
Dekker Inc., 1 .

C. Hunter, D. 3., "magnetic Bubble Memories: Part 2
Ssteas alestronic Inaineerinu, v. 51, no. 625, pp.39-51, JU.l 19J 1-9.

6. Chang, H., magnelic Bubble jechnology:Intara$e- rut ianetIos stoag Da~e ; O:q nd

7. Haggard, R., "magnetic Bubble Memory Systems-"
Elect onic Enuaineerina, v. 52, no. 639, pp. 61-6,June 193U.

8. Sieqel, P. "Megabit Bubble memory for Mon-volatile
Storage ," iectronic Enuineerina, v. 52, no. 634, pp.
51-59, february 19u.

9. Bursk y, Dave, "Special Report: Memories Pace Systems
Grovt," hletonlc osigatv. 28, no. 20, pp. 63-68,70, 72, 741, 10, 10, tepzeaber 1980

10. Foreman, Illing C., "Bubble Memory," Diaital Design,
v. 11, no. 6, pp. 26-37, June 1981.

11. Clewe.t, Richard, "Eubble Memories as a Floqpy Disk
Replacement " paper presented at MIDCON '78, E1
Segundo, CalIfornia, September 1978.

12. Call, Leonard M "Bubble Hemor Systems ," ia l
Design, v. 10, no. 12, pp. 38-39, rrecem ber 1480.

13. Davis Edvard V., "Suitability of Bubble Memories in
Parallel Processor Architectures, edin of the
1980 InternatIonal Conference on ; ss~na

196

14. MacDonald. Russell "Bubble emory Circuits Promote
3-Dimensional Stackin " en1s.uer Dian& , Y. 20t no.
6# pp. 135-141, June 9. 0 o

15. Bhandardar, D. P. and Juliussen, J. ., "Tutorial:
Computer System Advantages of a qetic Bubble
feaories," Com e, v. 8, no. 11, pp. 35-39, November
1975.

16. The Engineering Staff of Texas Instruments
Incorurated Semiconductor Gr uP,
lune c-Bubble Memory and Issociatjd Circ ll

omear lyro.

17. Bubbl-Tec Division, PC/mo Incorporated,lusual for MBB-8O Bubhl-fiachine, Docuanin No. UUU
DeceI DeS Ite RUe

18. Candalor, M. B.,on a& the gF/8-86 Ove&g.ia
SYste Hastir nesis.1 ava Postgraduate ScEoo ,

19. Intel Corporaion, NT/L4C eicrocoyputer Development
Sve _ Reference anual, 1976 1

20. Intel Ccrporation, isBC 864121 sinale Board Computer
Madware Reference Handal, 19719.

21. Digital Research CP/ Preliminary Documentation,CPZN-86 system Reference manua , 1980o

22. Digital Research, CPH-86 Preliminary Documentation,
CPJH-86 &ssembler Userts Guide, 1980.

23. Befiner, V. A. and Davis, E. R., 'MagneticBubble

Memories; Technolcgy and ipplicaticns "U&C troncs/Countermeaures, pp. 67-70, 84-90,---FUN-

197

INITIAL DISTRXBUTION LIST

so. Copies

1. Defense Technical Informaticn Center 2
Cameron Station
Alexandria, Virginia 22314

2. Defense Logistic Studies Information Exchange 1
U. S. Army Logistics Management Center
Fcrt Lee, Virginia 23801

3. Library, Code 0142 2
Naval Post raduate School
Monterey, galifcrnia 93940

4. Department Chairman, Code 52 2
Eepartment of Computer Science
Naval Postq ratuate school
Monterey, California 93940

5. Ca t. Jeffrey A. Neufeld, USHC 2
Defense Communciations Agency,
Derey Engineering Building
1860 vie ne Avenue
Reston, Virginia 22090

6. Capt. Michael S. Hicklin, USHC 2
1355 North 11th Street
vytheville, Virginia 24382

7. Lcdr. Robert R. Stilwell, USI, Code 53SB 2
Department of Coputeio Science
Naval Post raduate SchOol
Monterey, California 93940

8. Associate Professor Unc R. Kodrese Code 52KR 2
Department of Computer Science
Naval Post rauate ,School
Mcnterey, California 93940

9. Daniel Green (Code N-202) 1
Naval Surface Veapons Center
Dahigran, Virginia 22449

10. Cdr. P. Buff, OSN 1
PHS 400 Y
Naval Sea Systems Command
Vashinqton, D.C. 20362

198

